MATH 110, HOMEWORK SOLUTION SET 1
Imre Tuba

June 5, 1999

The following solutions are courtesy of Greg Leibon and Dell Kronewitter. I only compiled
them together.

p 13. 1: Here we are looking for he steady state temperature of a slab bounded between
x = 0 and x = ¢ with faces at temperatures u = 0 ands u = ug.
The solution to this problem varies only in the x direction and as such reduces to
one one the first differential equation any one ever plays with, namely:

d2
Zloo.
dx
After integrating once we obtain j—g = b and integrating again we get u(z) = bz +d

for some constants b and d. Our goal is to solve this using the boundary conditions
u(0) = c0 4 d = 0 (giving d = 0) and u(c) = bc 4+ 0 = up (giving b = “2).

So plugging in, we find the solution is u(z) = “2z.

Note now by Fourier’s law ((1) on page 4) ®g = —K =% = K%

p. 14. 4: This problem is very similar to the first problem except with concentric
spheres (of radius @ and b with ¢ < b ) bounding the region. The boundary sur-
faces are maintained at the constant temperatures r(a) = 0 and 7(b) = uy . So the
equation describing the heat should depend only on the radius and be independent of
the spherical variables ¢ and #. Using (22) on page 13 and the fact our equation is

also independent of # we have:

0* 1 0 [. du 0*
A= TW(TU) + Sin(8) 90 (sm(@)%) = W(ru) =0

Is the steady state equation.

From this we have by integrating (as in problem one) ru(r) = ¢r + d or u(r) =
otd — ¢+ 4 From the boundary conditions u(a) = €4 = 0 (giving ¢ = —%) ; and
d
u(b) = %b—l_d = up (giving d = 2%). So
_ —bug abup b a
ur) = a—1b + r(a—0b) a—b(_u0+ ;)

p. 14. 5: Now we we will change a boundary conditions in the previous problem ;
namely, replace the boundary condition at the surface r = b with its Newton’s law

analog of g% = 2% = h(T — u).

Using the notation of the previous solution, we have 2%(b) = ;—;l(b) = ;—Qd =h(T —

(c + %)) (giving d = 7a__af§)b;_l‘fg;h). So
u(r)

_—d  d hb>T —hb%al 1

a +F_a—abh+b2h+a—abh+b2h?

hb2T a
- Y
a — abh + b%h T



p. 16. 13: In this problem we have the upper-hemisphere of radius 1 with an insulated

bottom (hence the boundary condition 2% = 0 when z = 0).

We want to show 2%(r,Z) =0

(which is clear) via the formula

Jdu Jdu Jdu

Which indeed immediately gives g—g = —pfracdudz + zg—;‘ = —p0+ Og—;‘ = 0 (since

us

when 6 = 3

we have z = 0, which from the boundary conditions also gives that g—;‘ =0

To show this formula use the chain rule

Ju Oudz Oudp

96 0-00 " 0po6

and from (16) on page 12: 2% = w = —rsin(f) = —p and % = w =
rcos(f) = z.
Together we indeed get the formula g—g = —pg—;‘ + Zg_Z‘

p. 22. 1: Well the non-homogeneous wave equation is 3y = a*y, — g ((7) on p.19) and
if it’s static (i.e. just resting) then y; = 0 giving yy = 0 as well. So we are reduced to
the equation a?yyy — ¢ = O Ype = ag—Q. The fixing of end points to the x-axis means
that the boundary conditions are y(0) = 0 and y(2¢) = 0.

To solve this problem integrate twice to get
_ 9 2
y(z) = Wx + bz +d

and plug in the end points giving 0 = y(0) = d and 0 = y(2c) = 554¢* + 2¢b or

b= =%°. So the solution is

9 2 gc g
y(z) = 528 Tt = Wx(x — 2¢)
So y(«) is the needed parabola with minimum at ¢ of depth —222257‘

p. 22. 3: To do this problem note that on page 12 (10) we are given the planar A
in polar coordinates as Az = %(pz)p + p%zeg. (Really we are given the cylindrical

Laplacian which when restricted to the plane is this).So the static wave equation for
a membrane becomes

1 1
0= az;(pzp)p +

When there is nothing going on in the 6 direction (as in the problem) the equation
reduces to

1
2
0=a ;(Pzp)p-
Noting the radius is never zero (and a # 0)we find this is equivalent to solving

0= (pzp)p

with our boundary conditions are given as z(1) = 0 and 2(py) = 2.



Integrating we get pz,n, = b; and integrating again we getz(p) = bln(p) + c.
So from the first initial condition 0 = 2(1) = b-0 + ¢ giving ¢ = 0. The second

condition gives zg = 2(pg) = bln(pg) or b = lnfﬁ)' So one gets

_ zoln(p)
Z(p) - 111(,00)

as needed.
. 32. 1: (a) Integrating twice and noting ”constants” can depend on y gives

u(z,y) =2y + zh(y) + g9(y).

So the first boundary condition gives u(0,y) = ¢g(y) = y and uy(1,y) =3y + h(y) =0
gives h(y) = —3y. So the solution must be u(z,y) = 2%y — 3yzh + vy .

(b) 1y, y) = 20 gives u(z,y) = 2%y + g(y) + h(x). S0 u(0,y) = g(y) + h(0) = 0
gives g(y) = —h(0) = —c and u(z,0) = h(z) — ¢ = 2% gives h(z) = 2% + ¢. So
w(z,y) = 2%y — c+ 22 + ¢ = 2%y + 2% as needed.

. 32. 2.(b): uyy + 22Uy, + yu,, = 0 has discriminant (22%)? —4(y)(1) = 42* — 4y and
so is parabolic on y = a* (discriminant = 0), elliptic above the curve (discriminant
< 0), and hyperbolic below the curve (discriminant > 0).

. 33. 4: From p.28 (11) we know the general solution to the one dimensional wave
equation on the whole line is y(z,t) = ¢(a+at)+(x —at) for some twice differentiable
¢ and 1. Let ¢, and 1, denote the derivatives of the functions ¢ and @ respectively.
Using the initial condition y(0,z) = 0 we get ¢(z) = —tp(z). Similarly using y(0,2) =
0 (and the chain rule M% = a¢y(z + at) and Mz;—atl = —ap, (@ + at)) we find

y1(0,2) = agy(x) — atpy(x) = 2a¢,(z) = g(2).

(Note for the second derivative of ¢ to exist we must allow g to be differentiable at
this point — which was not mentioned.) Now observe by the fundamental theorem of
calculus that

rt+at
dx + at) — ¢p(x — at) = / Py du.
r—at
Using the above observation that ¢,(z) = % we achieve

r+at

dx +at) — ¢p(x —at) = %/ g(z)dz.

—at

Now recalling ¢(z — at) = —p(z — at) and y(t,2) = ¢p(a + at) + ¥(z — at) , we find

r+at
Jitoa) = ol + at) + (e —at) = 3o [ gla)da
as needed.
. 32. 6: Take u = ¢ +t1) and note Upy = Nu; Upy = APU;  Ugy = pruy uy = Aug
Uy = .
Now substitute « = e(*+4¥) into the equation Auge+ Bugy +Cuyy+Dug+Euy+Fu
and to get u(A/\2 +BA\u+Cul+ DN+ Ep+ F). So this choice of u(x,y) satisfies the



equation
Aty + Bugy + Cuyy + Duy + Euy + FU =0
if and only if A and p satisfy the algebraic relationship
AN 4+ B \u+Cp> + DN+ Ep+ F = 0.

. 34. T: This problem requires only the remembering of some simple properties of the

. . . . . 1. a2 N . N a2y
deri vative. Namely the second derivative is linear or 5= > " | ¢ u, = >4 ¢ 53"

a2 N _ N %u
and5 > g Cnlln = X mq On 5,2

From this observe

92 92\ & 97\ & 9%\
Au = (@ + a—yz) ;Cnun = (@) Z:Cnun + (a—yz) ;Cﬂun
N N
0%u,, 0%u,

= ;Cn—ax2 —I_?;Cn—ayz

N N
0*u 0*u

;c (8362 + 83/2) ;C (Un)

Now let’s use the fact that each w,, satisfies Laplace’s equation that A(u,) = 0, giving

N N
Ay = chA(un) = cho =0;
n=1 n=1

which is exactly the needed fact that u satisfies Laplace’s equation.
. 45. 1: (a) First note that for & = 0 that [ cos(kx)dx = [ cos(02)dx = 7 . Now if

k#0
/ cos(kx)dx = %sin(lmﬂg =sin(kr)—0=0
0

So from the identity in the book we have

/07T cos(na) cos(ma)dx = %/; cos((n — m)z) — cos((n 4+ m)z)dx

So using the first computations
n=m

/ cos(nz) cos(ma)dx = {
0
(b) Here we are to show {\/g} U {ﬁ} is an orthonormal family. From the above

Ny

note that if n and m are not ze ro then we have

/07T ()P (7 )de = /07T \/ECOS(nx)\/gcos(mx)dx = { %%g :é 7”;;77;@0 } ‘

To finish the problem it is necessary to see how things look when inner pro-

ducted with ¢g = \/; For n # 0 (from the first computation) we have (¢g, ¢,,) =



fo [[cos (nz)dz = 0 as needed. Also (¢g,¢o) = fo \/>\/>dw—E dr =1 as

need; so the entire set is an orthonormal family.
p. 46. 4: ¢y and v, are orthogonal on [—1,1] since

1 1 1
/1¢1¢29€d=/19€d96= §$2|1_1 =1-1=0
For (Baz? 4+ Az + 1,4;) = 0 implies

1
/Bx2+Ax+1dx:0
1
0r——|—2_Osob_—3 Andfor(Bac + Az + 1,%1) = 0 implies
/B$3+Ax2+xdx:0
1

T % =10. So A =0. So we're done.
Note: The next three problems are just computation so to make them more interesting |

thought we’d take a look at some relate computations form which to derive them. First

off recall our inner product is (¢(x) fo z)dz. We will be computing
this inner product for several functlons related to sm(nx) for n > 0 and cos(nz) for

n > 0.
For starters note:

™ 7T.m—l—l
my _ ([ —
(cos(0z),z™) /0 vidr =

So we may assume n > 0 for our remaining computations.

n # 0 we have

For starters when

(cos(nx),1) = /07T cos(nz)dz =0
and

inta 1) = [ty = { 1221

Now note integration by parts gives:

(cos(na),a™) = /; 2™ cos(ma )da

xm

. bis m m—1 _: m, m-1
= — - — dex = ——
" sm(nx)|0 " /0 x sm(nx) x " ($ ,sm(nx))

and

$m

(sin(nz),2™) = / 2™ sin(na)de = —— cos(na)|j + m/ ™ cos(na)dx
0 n - Jo



i

— + (2™ cos(nx)) n=2k

% + Z(2m~t cos(na)) n =2k

{

-1

b

Now observe by recursion theses computations give explicit numbers for (sin(nz), 2™)

and (cos(nz),z™) for all n and m.
As an examples of this note:

2
(cos(nz),z) = (1,sin(nz)) = { 0 n = 2k }
and
] R %(1,COS(TL$)) ==z n=2k—-1
(Sm(””)‘{ S a(Leos(na)) = 55 m=2k [
Similarly
(cos(na), %) = —2(a,sin(ne)) = { & P21
cos(nz),z°) = z,sin(nz)) = Z_g o — ok .
and
™ 2 S AT S § A
(sin(na),2?) = i - §($7C08(nx)) o 2+ o =2kl
2 eostna) = = =

Our actual problem in fact involves certain related inner products, let a,(f)

(f(z),sin(nz)) for any f(x).

2

ks

2

ks

(f(z),cos(nz)) and b,(f) =

To use the above formulas efficiently note a, and b,

linear namely, a,(cf + g)

can(f)+a,(g). This gives us in particular that a,(ca®+da*+ef) = ca,(2?)+da,(z)+

ean(1). Similarly for b,.
p. 56. 4: (a)From above when n # 0

a(xz)_g = on=2k—-1\_ [ = n=2k-1
" Tl % n=2k Tl n=2k#0
Forn:Owehaveaoz%.
fwﬂ——|—4 ( )2 cos(nx)
n=1 K
(b)
by 2 E A =2k Lo =2k
T = =2k T = n=2k#0

)n—l—l - 21 _I_ (_1)n—l—1

!
f~2r Z; [( - (mr):a

] sin(na)



p. 56. 5:

p. 56. 6: Note that

b,(sin(z)) = (sin(x),sin(nz)) = T

So

n=2k—-1
n = 2k

n=2k—-1
n=2%k#0

27

P
©-
3
©-
,_.
e
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—N—
oy ©

n#1

|

J~ p— sin() = sin(x).

Note: For the next four problems we’ll be looking for the Fourier series of various func-

tions. This means expressing nicely f ~ > (f, ¢, )¢, where the ¢, are the elements of
the orthonormal family

(6o = ——

1
6

(S5}

P.

(f, 1)

(rsinthe)) = 2 [

Similarly

(Feosthry = 5 [

j fla)dx

Qk(l — cos(km)) + ;—k(cos(lmr)) —1)

—T

—T

_Qﬂ-
T2k

\/ﬂ} U {¢2k = % Sin(kx)}zozl U {¢2k—1 _

To do this observe (f, ¢o) = \/%(f, 1), (f, ¢2x) = ﬁ(f7 sin(kz)), and (f, dop_1)
ﬁ(fv cos(kz)). So we will always compute these then plug into the above formula.
. 1:

_ 0 T
—ﬂ/ dw-l-ﬁ/ de =10
2 /. 2 /,

sin(kz)dz + g/

% cos(ka)}re,.

’ sin(ka)dx
a-eostnni={ 25

cos(kx)dx + g/ cos(ka)dx
0



=0+ =Z0=0

2k 2k
So
.1 . 2T . sin((20 — Da
fr ) (F0n)on =0+ —sin((2 = Da)— = ZQ%
=" B 1=l B
p. 66. 2: First note the function is
%x +2 -7 <z<0
2 0<ze <7 )
So
Gy=2 [ fayde =1 /O(Ex—l—Q)dx—l—]Q/rdx _3
R A S \J_, T 0 B
I . 102 . i
by = — f(a)sin(kz)dz = —(/ (=2 + 2)sin(kz)dz + 2/ sin(ka)dx)
T/ R - 0
Then we have " sin(na)dz = 0 so
9 0
== - zsin(kax)da
and so with integration by parts we arrive at
B 2(_1)k—|—1
B k
1 (" 1 (%2 T
a = — flz)cos(kx)de = —=( | (=2 +2)cos(ka)dz+2 | cos(kz)dz)
T J—x T Jx 0

The terms not multiplied by z above evaluate to 0 so we are left with

2 (/0 v cos(ka)da

2
T —7r

which by integration by parts gives us

2 cos(kz). o 9 .
040+ S(—5 ) 2= 55 ((=D" + 1)
p. 66. 4:
(f, 1) = /7T LN — %(eﬂ’a _ e—qra) _ QSinh(aﬂ-)
-7 a 2 a

ks

(Fcosthe)) + i fosin(ka)) = [ e cos(rardo + [ " o isin(ke)de = / U it g

—T —T —T

0
. 1 . .y
_ (a+tik)z _ (a+ik)r _  —(a+tik)pi
/_7T e dx PR (e e )



_ a— ik (e*"(cos(km) + isin(kw) — e~ (cos(km) — i sin(km))

 (a—ik)(a+ ik)

— ik)((sinh(am))(—1)")

a— ik am —ar 2
= ———((e"" — e ") cos(kT)) = P (a

- a2 + k2
2. (2%
T2t (sinh(am))(—1)" + i (m(smh(aﬂ))(—l)k)

So

Feoy (frda)d

-2k . .
S (sinh(am))(— 1" cos(kz) + m(smh(aﬂ))(—l)k sin(kx)

1 2sinh(ar) 1 —
27r a ;kz_:

o T — a? 4+ k2

2sinh(ar) [% i (—1)F (acos(kx)_ksin(kw))]

p. 66. 5: This problem is an immediate consequence if the previous since

(sinh(aa), 61) = (00 = 2 00) — (7, 00)

So form the previous problem (or use the previous problem and that sinh(z) is odd)

(sinh(az), cos(kz) + isin(kz)) = ¢ (az__l_ikz(sinh(aﬂ))(_l)k)

Also by oddness

I~/ -2k
F ) (fbn)dn = - > (a2 n kz(sinh(aﬂ))(—l)k sin(kx))
n=1
cos(2nz) (p. 79 or result 1 in the

p. 80. 2: Since on [0, 7] we have sin(z) = 2 — 23777 | S

next section) evaluating at zero

o0
2 4
T
or
o0

1 1
527;4712—1

Evaluatin at we have

or

©



