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The following solutions are courtesy of Greg Leibon and Dell Kronewitter. I only compiled
them together.

p 13. 1: Here we are looking for he steady state temperature of a slab bounded between
x = 0 and x = c with faces at temperatures u = 0 ands u = u0.

The solution to this problem varies only in the x direction and as such reduces to
one one the �rst di�erential equation any one ever plays with, namely:

d2u

dx2
= 0:

After integrating once we obtain du
dx

= b and integrating again we get u(x) = bx+ d
for some constants b and d. Our goal is to solve this using the boundary conditions
u(0) = c0 + d = 0 (giving d = 0) and u(c) = bc+ 0 = u0 (giving b =

u0
c
).

So plugging in, we �nd the solution is u(x) = u0
c
x.

Note now by Fourier's law ((1) on page 4) �0 = �K�@u
@x

= K u0
c
.

p. 14. 4: This problem is very similar to the �rst problem except with concentric
spheres (of radius a and b with a < b ) bounding the region. The boundary sur-
faces are maintained at the constant temperatures r(a) = 0 and r(b) = u0 . So the
equation describing the heat should depend only on the radius and be independent of
the spherical variables � and �. Using (22) on page 13 and the fact our equation is
also independent of � we have:

� = r
@2

@r2
(ru) +

1

sin(�)

@

@�

�
sin(�)

@u

@�

�
=

@2

@r2
(ru) = 0

Is the steady state equation.
From this we have by integrating (as in problem one) ru(r) = cr + d or u(r) =

cr+d
r

= c + d
r
. From the boundary conditions u(a) = ca+d

a
= 0 (giving c = �d

a
) ; and

u(b) =
� d
a
b+d

b
= u0 (giving d =

abu0
a�b ). So

u(r) =
�bu0
a� b

+
abu0

r(a� b)
=

b

a � b
(�u0 +

a

r
):

p. 14. 5: Now we we will change a boundary conditions in the previous problem ;
namely, replace the boundary condition at the surface r = b with its Newton's law
analog of @u

@n
= @u

@r
= h(T � u).

Using the notation of the previous solution, we have @u
@r
(b) = �d

r2
(b) = �d

b2
= h(T ��

c+ d
b

�
) (giving d = �hb2aT

a�abh+b2h). So

u(r) =
�d
a

+
d

r
=

hb2T

a� abh+ b2h
+

�hb2aT
a� abh+ b2h

1

r
:

=
hb2T

a� abh+ b2h
(1� a

r
)
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p. 16. 13: In this problem we have the upper-hemisphere of radius 1 with an insulated
bottom (hence the boundary condition @u

@z
= 0 when z = 0).

We want to show @u
@�
(r; �

2
) = 0

(which is clear) via the formula

@u

@�
= ��@u

@z
+ z

@u

@�
:

Which indeed immediately gives @u
@�

= ��frac@u@z + z @u
@�

= ��0 + 0@u
@�

= 0 (since

when � = �
2 we have z = 0, which from the boundary conditions also gives that @u

@z
= 0

).
To show this formula use the chain rule

@u

@�
=
@u

@z

@z

@�
+
@u

@�

@�

@�

and from (16) on page 12: @z
@�

= @(r cos(�))

@�
= �r sin(�) = �� and @�

@�
= @(r sin(�))

@�
=

r cos(�) = z:

Together we indeed get the formula @u
@�

= ��@u
@z

+ z @u
@�
:

p. 22. 1: Well the non-homogeneous wave equation is ytt = a2yxx� g ((7) on p.19) and
if it's static (i.e. just resting) then yt = 0 giving ytt = 0 as well. So we are reduced to
the equation a2yxx � g = or yxx = g

a2
. The �xing of end points to the x-axis means

that the boundary conditions are y(0) = 0 and y(2c) = 0.
To solve this problem integrate twice to get

y(x) =
g

2a2
x2 + bx+ d

and plug in the end points giving 0 = y(0) = d and 0 = y(2c) = g

2a2
4c2 + 2cb or

b = �gc
a2

. So the solution is

y(x) =
g

2a2
x2 � gc

a2
x =

g

2a2
x(x� 2c)

So y(x) is the needed parabola with minimum at c of depth �c2g
2a2

.

p. 22. 3: To do this problem note that on page 12 (10) we are given the planar �

in polar coordinates as �z = 1
�
(�z)� +

1
�2
z�� . (Really we are given the cylindrical

Laplacian which when restricted to the plane is this).So the static wave equation for
a membrane becomes

0 = a2
1

�
(�z�)� +

1

�2
z�� :

When there is nothing going on in the � direction (as in the problem) the equation
reduces to

0 = a2
1

�
(�z�)�:

Noting the radius is never zero (and a 6= 0)we �nd this is equivalent to solving

0 = (�z�)�

with our boundary conditions are given as z(1) = 0 and z(�0) = z0.
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Integrating we get �zrho = b; and integrating again we getz(�) = b ln(�) + c.
So from the �rst initial condition 0 = z(1) = b � 0 + c giving c = 0. The second

condition gives z0 = z(�0) = bln(�0) or b =
z0

ln(�0)
. So one gets

z(�) =
z0 ln(�)

ln(�0)

as needed.
p. 32. 1: (a) Integrating twice and noting "constants" can depend on y gives

u(x; y) = x3y + xh(y) + g(y):

So the �rst boundary condition gives u(0; y) = g(y) = y and ux(1; y) = 3y + h(y) = 0
gives h(y) = �3y. So the solution must be u(x; y) = x3y � 3yxh+ y .

(b) uxy(x; y) = 2x gives u(x; y) = x2y + g(y) + h(x). So u(0; y) = g(y) + h(0) = 0

gives g(y) = �h(0) = �c and u(x; 0) = h(x) � c = x2 gives h(x) = x2 + c. So
u(x; y) = x2y � c+ x2 + c = x2y + x2 as needed.

p. 32. 2.(b): uxx+2x2uxy+yuyy = 0 has discriminant (2x2)2�4(y)(1) = 4x4�4y and

so is parabolic on y = x4 (discriminant = 0), elliptic above the curve (discriminant
< 0), and hyperbolic below the curve (discriminant > 0).

p. 33. 4: From p.28 (11) we know the general solution to the one dimensional wave
equation on the whole line is y(x; t) = �(x+at)+ (x�at) for some twice di�erentiable
� and  . Let �u and  u denote the derivatives of the functions � and  respectively.
Using the initial condition y(0; x) = 0 we get �(x) = � (x). Similarly using yt(0; x) =

0 (and the chain rule d�(x+at)

dt
= a�u(x+ at) and d (x�at)

dt
= �a u(x+ at)) we �nd

yt(0; x) = a�u(x)� a u(x) = 2a�u(x) = g(x):

(Note for the second derivative of � to exist we must allow g to be di�erentiable at
this point { which was not mentioned.) Now observe by the fundamental theorem of
calculus that

�(x+ at)� �(x� at) =

Z x+at

x�at
�udu:

Using the above observation that �u(x) =
g(x)

2a we achieve

�(x+ at)� �(x� at) =
1

2a

Z x+at

x�at
g(x)dx:

Now recalling �(x� at) = � (x� at) and y(t; x) = �(x+ at) +  (x� at) , we �nd

y(t; x) = �(x+ at) +  (x� at) =
1

2a

Z x+at

x�at
g(x)dx

as needed.
p. 32. 6: Take u = e(�x+�y) and note uxx = �2u; uxy = ��u; uxy = �2u; ux = �u;
uy = �u:

Now substitute u = e(�x+�y) into the equation Auxx+Buxy+Cuyy+Dux+Euy+Fu
and to get u(A�2+B��+C�2+D�+E�+F ). So this choice of u(x; y) satis�es the

3



equation

Auxx +Buxy + Cuyy +Dux +Euy + FU = 0

if and only if � and � satisfy the algebraic relationship

A�2 + B�� + C�2 +D�+E�+ F = 0:

p. 34. 7: This problem requires only the remembering of some simple properties of the

deri vative. Namely the second derivative is linear or @2

@x2

PN
n=1 cnun =

PN
n=1 cn

@2un
@x2

and @2

@y2

PN
n=1 cnun =

PN
n=1 cn

@2un
@y2

.

From this observe

�u =

�
@2

@x2
+

@2

@y2

� NX
n=1

cnun =

�
@2

@x2

� NX
n=1

cnun +

�
@2

@y2

� NX
n=1

cnun

=

NX
n=1

cn
@2un

@x2
+

NX
n=1

cn
@2un

@y2

=

NX
n=1

cn

�
@2un

@x2
+
@2un

@y2

�
=

NX
n=1

cn�(un):

Now let's use the fact that each un satis�es Laplace's equation that �(un) = 0, giving

�u =

NX
n=1

cn�(un) =

NX
n=1

cn0 = 0;

which is exactly the needed fact that u satis�es Laplace's equation.
p. 45. 1: (a) First note that for k = 0 that

R �
0
cos(kx)dx =

R �
0
cos(0x)dx = � . Now if

k 6= 0 Z �

0

cos(kx)dx =
1

k
sin(kx)j�0 = sin(k�)� 0 = 0

So from the identity in the book we haveZ �

0

cos(nx) cos(mx)dx =
1

2

Z �

0

cos((n�m)x)� cos((n+m)x)dx

So using the �rst computationsZ �

0

cos(nx) cos(mx)dx =

�
�
2

n = m

0 n 6= m

�
:

(b) Here we are to show f
q

2
�
g [ f 1p

�
g is an orthonormal family. From the above

note that if n and m are not ze ro then we have

Z �

0

�n(x)�m(x)dx =

Z �

0

r
2

�
cos(nx)

r
2

�
cos(mx)dx =

�
2
�
�
2
= 1 n = m0

2
�
0 = 0 n 6= m

�
:

To �nish the problem it is necessary to see how things look when inner pro-

ducted with �0 =
q

1
�
For n 6= 0 (from the �rst computation) we have (�0; �n) =
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R �
0

q
1
�

q
2
�
cos(nx)dx = 0 as needed. Also (�0; �0) =

R �
0

q
1
�

q
1
�
dx = 1

�

R �
0
dx = 1 as

need; so the entire set is an orthonormal family.
p. 46. 4:  1 and  2 are orthogonal on [�1; 1] sinceZ 1

�1
 1 2xd =

Z 1

�1
xdx =

1

2
x2j1�1 = 1� 1 = 0

For (Bx2 +Ax+ 1;  1) = 0 impliesZ 1

�1
Bx2 +Ax + 1dx = 0

or 2B
3
+ 2 = 0 so b = �3. And for (Bx2 +Ax+ 1;  1) = 0 impliesZ 1

�1
Bx3 + Ax2 + xdx = 0

or A
3 = 0. So A = 0. So we're done.

Note: The next three problems are just computation so to make them more interesting I
thought we'd take a look at some relate computations form which to derive them. First
o� recall our inner product is (�(x); f(x)) =

R �
0 �(x)f(x)dx. We will be computing

this inner product for several functions related to sin(nx) for n > 0 and cos(nx) for
n � 0.

For starters note:

(cos(0x); xm) =

Z �

0

xmdx =
�m+1

m+ 1

So we may assume n > 0 for our remaining computations. For starters when
n 6= 0 we have

(cos(nx); 1) =

Z �

0

cos(nx)dx = 0

and

(sin(nx); 1) =

Z �

0

sin(nx)dx =

�
2
n

n = 2k � 1
0 n = 2k

�
Now note integration by parts gives:

(cos(nx); xm) =

Z �

0

xm cos(mx)dx

=
xm

n
sin(nx)j�0 �

m

n

Z �

0

xm�1 sin(nx)dx = �m
n
(xm�1; sin(nx))

and

(sin(nx); xm) =

Z �

0

xm sin(nx)dx = �x
m

n
cos(nx)j�0 +

m

n

Z �

0

xm�1 cos(nx)dx
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=

�
�m

n
+ m

n
(xm�1; cos(nx)) n = 2k � 1

��m

n
+ m

n
(xm�1; cos(nx)) n = 2k

�
:

Now observe by recursion theses computations give explicit numbers for (sin(nx); xm)
and (cos(nx); xm) for all n and m.

As an examples of this note:

(cos(nx); x) =
�1
n
(1; sin(nx)) =

�
� 2
n2

n = 2k � 1
0 n = 2k

�
and

(sin(nx); x) =

�
�
n
+ 1

n
(1; cos(nx)) = �

n
n = 2k � 1

��
n

+ 1
n
(1; cos(nx)) = ��

n
n = 2k

�
:

Similarly

(cos(nx); x2) =
�2
n
(x; sin(nx)) =

�
�2�
n2

n = 2k � 1
2�
n2

n = 2k

�
:

and

(sin(nx); x2) =

(
�2

n
+ 2

n
(x; cos(nx)) = �2

n
+ �4

n3
n = 2k � 1

�2

n
+ 2

n
(x; cos(nx)) = ��2

n
n = 2k

)

Our actual problem in fact involves certain related inner products, let an(f) =
2
�
(f(x); cos(nx)) and bn(f) =

2
�
(f(x); sin(nx)) for any f(x).

To use the above formulas e�ciently note an and bn linear namely, an(cf + g) =
can(f)+an(g). This gives us in particular that an(cx

2+dx2+ef) = can(x
2)+dan(x)+

ean(1). Similarly for bn.
p. 56. 4: (a)From above when n 6= 0

an(x
2) =

2

�

�
�2�
n2

n = 2k � 1
2�
n2

n = 2k

�
=

�
�4
n2

n = 2k � 1
4
n2

n = 2k 6= 0

�

For n = 0 we have a0 =
2�3

3
.

f � �2

3
+ 4

1X
n=1

(�1)n+1

n2
cos(nx)

(b)

bn(x
2) =

2

�

(
�2

n
+ �4

n3
n = 2k � 1

�2

n
n = 2k

)
=

�
2�
n
� 8

n3�
n = 2k � 1

�2�
n

n = 2k 6= 0

�

f � 2�2
1X
n=1

"
(�1)n+1

n�
� 2

1 + (�1)n+1

(n�)3

#
sin(nx)
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p. 56. 5:

bn(x(� � x)) = bn(�x� x2) = �bn(x)� bn(x
2)

=
2

�

 
�

�
�
n

n = 2k � 1
��
n

n = 2k

�
�
(

�2

n
+ �4

n3
n = 2k � 1

��2

n
n = 2k

)!

=
2

�

(
�2

n
n = 2k � 1

��2

n
n = 2k 6= 0

)
� 2

�

(
�2

n
+ �4

n3
n = 2k � 1

��2

n
n = 2k 6= 0

)

=
2

�

�
4
n3

n = 2k � 1

0 n = 2k 6= 0

�

f � 8

�

1X
k=1

sin((2k� 1)x)

(2k � 1)3

p. 56. 6: Note that

bn(sin(x)) = (sin(x); sin(nx)) =
�

2
(�n; �1) =

�
0 n 6= 1
�
2

n = 1

�
So

f � 2

�

�

2
sin(x) = sin(x):

Note: For the next four problems we'll be looking for the Fourier series of various func-
tions. This means expressing nicely f �P(f; �n)�n where the �n are the elements of
the orthonormal family

f�0 =
1p
2�
g [ f�2k =

1p
�
sin(kx)g1k=1 [ f�2k�1 =

1p
�
cos(kx)g1k=1:

To do this observe (f; �0) =
1p
2�
(f; 1), (f; �2k) =

1p
�
(f; sin(kx)), and (f; �2k�1) =

1p
�
(f; cos(kx)). So we will always compute these then plug into the above formula.

p. 65. 1:

(f; 1) =

Z �

��
f(x)dx =

��
2

Z 0

��
dx+

�

2

Z �

0

dx = 0

(f; sin(kx)) =
��
2

Z 0

��
sin(kx)dx+

�

2

Z 0

��
sin(kx)dx

=
�

2k
(1� cos(k�)) +

��
2k

(cos(k�))� 1) = 2
�

2k
(1� cos(k�))[=

�
2�
k

k = 2l� 1
0 n = 2l

�
:

Similarly

(f; cos(kx)) =
��
2

Z 0

��
cos(kx)dx+

�

2

Z �

0

cos(kx)dx
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=
��
2k

0 +
��
2k

0 = 0

So

f �
X

(f; �n)�n = 0 +

1X
l=l

1

�
sin((2l� 1)x)

2�

2l� 1
=

1X
l=l

2
sin((2l� 1)x)

2l� 1

p. 66. 2: First note the function is�
2
�
x+ 2 �� � x � 0

2 0 � x � �

�
:

So

(f; 1) =
1

�

Z �

��
f(x)dx =

1

�

�Z 0

��
(
2

�
x+ 2)dx+]2

Z �

0

dx

�
= 3

bk =
1

�

Z �

��
f(x) sin(kx)dx =

1

�
(

Z 0

��
(
2

�
x+ 2) sin(kx)dx+ 2

Z �

0

sin(kx)dx)

Then we have
R �
�� sin(nx)dx = 0 so

=
2

�2

Z 0

��
x sin(kx)dx

and so with integration by parts we arrive at

=
2(�1)k+1

�k

ak =
1

�

Z �

��
f(x) cos(kx)dx =

1

�
(

Z 0

��
(
2

�
x+ 2) cos(kx)dx+ 2

Z �

0

cos(kx)dx)

The terms not multiplied by x above evaluate to 0 so we are left with

2

�2
(

Z 0

��
x cos(kx)dx

which by integration by parts gives us

0 + 0 +
2

�2
(
cos(kx)

k2
) j0��=

2

�2k2
((�1)k + 1)

p. 66. 4:

(f; 1) =

Z �

��
eaxdx =

2

a

(e�a � e��a)

2
=

2 sinh(a�)

a

(f; cos(kx)) + i(f; sin(kx)) =

Z �

��
eax cos(kx)dx+

Z �

��
eaxi sin(kx)dx =

Z 0

��
eaxeikxdx

=

Z 0

��
e(a+ik)xdx =

1

a+ ik
(e(a+ik)� � e�(a+ik)pi)
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=
a� ik

(a� ik)(a+ ik)

�
ea�(cos(k�) + i sin(k�)� e�a�(cos(k�)� i sin(k�)

�

=
a � ik

a2 + k2
((ea� � e�a�) cos(k�)) =

2

a2 + k2
(a� ik)((sinh(a�))(�1)k)

=
2a

a2 + k2
(sinh(a�))(�1)k + i

� �2k
a2 + k2

(sinh(a�))(�1)k
�

So

f �
X

(f; �n)�n

=
1

2�

2 sinh(a�)

a
+

1

�

1X
k=l

2a

a2 + k2
(sinh(a�))(�1)k cos(kx) + �2k

a2 + k2
(sinh(a�))(�1)k sin(kx)

=
2 sinh(a�)

�

"
1

2a
+

1X
k=l

(�1)k
a2 + k2

(a cos(kx)� k sin(kx))

#

p. 66. 5: This problem is an immediate consequence if the previous since

(sinh(ax); �k) = (
eax � e�ax

2
; �k) =

1

2
((eax; �k)� (e�ax; �k))

So form the previous problem (or use the previous problem and that sinh(x) is odd).

(sinh(ax); cos(kx) + i sin(kx)) = i

� �2k
a2 + k2

(sinh(a�))(�1)k
�

Also by oddness

f �
X

(f; �n)�n =
1

�

1X
n=1

� �2k
a2 + k2

(sinh(a�))(�1)k sin(kx)
�

p. 80. 2: Since on [0; �] we have sin(x) = 2
�
� 4

�

P1
n=1

cos(2nx)

4n2�1 (p. 79 or result 1 in the

next section) evaluating at zero

0 =
2

�
� 4

�

1X
n=1

1

4n2 � 1

or

1

2
=

1X
n=1

1

4n2 � 1

Evaluatin at �
2
we have

1 =
2

�
� 4

�

1X
n=1

(�1)n
4n2 � 1

or

��
4
+

1

2
=

1X
n=1

(�1)n
4n2 � 1
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