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For the next three problems I will be using the new interval [—c¢, ¢]. Here the orthonormal
set corresponding to the Fourier series on [—7, 7] becomes {¢7} = {\/Té(Zx)} on [—c,¢].
So our new series is f ~ > (f, ¢S )¢5 where

e == [ f(w)m(%w)dw:\/; " fEwontun= [ <o Ena

and so
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This last formula is what I'll use.

Also observe sometimes I change the definition of the functions in these problems to use
result one in the next section to replace ~ with =.

p. 85. 1:
0 -3<x<0
%sz
now note
0 - 7<2<0
fl=z)=< 1 0<az<n
T 1 2=0,3,-3
So

¢ T —cos(na 1)+t
(sin(nx),f(;x))old :/0 sin(nk)dz = ( )|0 = (=)™ + 1.

Similarly

and



5o
Z 2sin((2k — 1)2)

— 2k—1
In fact
1 o= 2sin((2k — 1)a)
2 ;E 2%k — 1

by result one in the next section - since f = % at 0,3, —3.
p. 85 5.(a): By the refered to problem

(rx,sin(na)) = Vr(x, ¢2,) = V7 1 2(-1)"

N

The other coeefecients are zero since z is odd. So

o0

_ 1\n+1
f~ %Z = 171 sin(nmz).

n=0
p.- 85. 9: Our function is the periodic extention of
-1 —c<z<0

f= 1 O<z<e
0 z=10,¢,—c

(Where the values I choose at lc are provided by looking at result one telling us where
the series converges point wise). Note further that series is the odd extention of

Fe 1 0<e<e
10 x2=0,¢
So the needed Fourier series is given by the Fourier sine series of this function squished
to this interval. From 1(b) in section 14 on [0, 7] we have

4 = sin((2n = Da
;Z (( )z)

2n —1

n=1

Hence our new series is

4 o sin( (2n;1)7rx)
T 7; 2n—1

Which by the next result one and the choices made is in fact equal to the given function

at each point.
p. 118. 1: From problem 4(a) on p. 56:

SR SIE
n=1

cosnxd <ax<m




Extract the coefficients from this Fourier series and transplant them into (14) on p.
113 to obtain

2 > 1)~
u(x,t) = % + 42 %6_”2“ cos na
n=1

p. 118. 2: If u(z,y) = X(2)Y (y), then

Upr(2,y) = —uyy(2,y)
X"(2)Y(y) = X(2)Y(y)
X”(w) _ _Y”(y)
X(x) Y(y)

The left-hand side is a function of x and the right-hand side is a function of y, hence
they are both equal to a constant, say —A. This gives

X"2)+AX(2)=0 and Y"(y)-AY(y)=0
Since we are looking for interesting solutions, we can assume that X,Y # 0. Hence

0=1u:(0,y)=X'"(0)Y(y) = X'(0)=0
0=uy(my)=X'(MY(y) = X'(r)=0
0= u(z,0) = X(2)Y(0) = Y(0)=0

A=0: Then X(z)=az+ b and X'(z) = a, so X’(0) = 0 implies @ = 0. So we can
choose Xo(z) = 1 up to constant multiple. Solving for Y, we find Y (y) = ¢y + d,
and Y(0) = 0 forces d = 0. Hence Yy(y) = y up to constant multiple, and
UO(xv y) =Y.

A< 0: Then X(z) = 16V 4 eye™VM and X'(z) = VA — e /XeV A 8o
0= X'(0) = (¢ — co)VA implies ¢; = ¢3. But 0 = X'(7) = clx/X(e\/X7T — VAT,
But ¢V > 1 and e—VAT < 1 so this would force ¢; = 0 and hence ¢; = 0. The
result is X (z) = 0, which gives the trivial solution u(z,y) = 0.

A > 0: Then X (z) = ¢ cos(vAz) 4 ez sin(—vAz) and X'(z) = —c;vV/Asin(vV/Az) +
coV/Acos(v/=Az). So 0 = X'(0) = /A implies ¢ = 0. Now use 0 = X'(1) =
—c1V/Asin(vV/AT) to conclude either ¢; = 0 (which would again yield the trivial
solution) or v Am = nr for any integer n. Hence X, (z) = cosnz. Note that we
may restrict n to be a positive as cos is an even function and n = 0 just gives
Xo(z) =1, which we already have.

Now Y (y) = c3eV W ege™VA = (36" 4 c4e . The boundary condition Y(0)=0
implies ¢4 = —c3 and Y,,(y) = sinh ny up to constant multiple. Hence u,(z,y) =
cos ne sinh ny.
So the general solution is u(z,y) = Aoy + >, - A, cosna sinh ny. Comparing the
remaining boundary condition

flz) =u(z,2) =240+ Z A,, cosnz sinh 2n

n=1



with the Fourier series
a o0
0
fla) = > + Zan cos na
n=1
for

2 s
a, = —/ f(z)cosnz dx
T Jo

gives

I 2 T
AOI%/O f(z)dz and An:m/o f(z)cosnz dx forn > 1

p. 118. 3: a:

X"2)T(t) — atX (2)T"(t) = 0
X"(x) _ tT" (1) Y
rX () T(t)

since the LHS is a function of z and the RHS is a function of ¢ only.
Hence X"(z) 4 Az X(2) =0 and tT"(t) + NT'(t) = 0.
c: This is not a separable equation as each of the three terms contains both z and ¢.
p. 119. 7: This is trivial. Just use the linearity of differentiation.
p. 126. 1: Using equation (7) on p. 124, F(z) = Asin7a, and the solution is
F(z +at)+ F(az —at)  A(sin(rz + 7at) + sin(rz — wat))

y(w,t) = 5 = 5 = Asin(wz) cos(rat)

This indeed satisfies:

= y(0,t) = Asin0cos(mat)
y(1,t) = Asin 7 cos(mat)

= y(z,0) = —aAsin(7wz)sin0

Asin(rz) = y(z,0) = Asin(rz)cos0

o o O

Also, y(x,t) is clearly continuous in @ and ¢ and y(z,t) = —aAsin(7z) cos(mat) is
continuous in ¢.
p. 126. 2: This is almost exactly the same as the previous problem.
p. 127. 4: If y(z,t) = X (2)T'(1), then

yer(w,t) = a’yge(x,t)
X(2)T"(t) = *X"(2)T(1)

X//(x) _ T”(t)

X(2) a?T(t)

The left-hand side is a function of 2 and the right-hand side is a function of ¢, hence
they are both equal to a constant, say —A. This gives

X"(z)+AX(z)=0 and T"(t)+ Ad*T(t) =0



Since we are looking for interesting solutions, we can assume that 7, X # 0. Hence
0=y(0,t)=X(0)I'(t) = X(0)=0
0=ylc,t)=X(c)T(t) = X(c)=0
0=y(z,0)=X(2)T'(0) = T'(0)=0
p. 127. 5: Consider the following three cases:
A< 0: Let @« = /=A. The solutions of X”(z) + AX(z) = 0 are then X(z) =
c1e%% 4+ coe™ ", Now
X(O)IO = (3= —C
X(e)=0 = c(e*—e ™) =0
Since €% — e=¢ = €%¢ — 1 /e*® #£ 0 for ¢ # 0, ¢; = 0. So we only get the trivial
solution Xo(z) = 0.
A =0: Then X”(z) = 0, and hence X(z) = az +b. X(z) = 0 implies b = 0 and
X(c) =0 implies @ = 0. Again, this is just the trivial solution.
A>0: Let a = v/A. Then the solutions of X”(z) 4+ AX(z) = 0 are of the form
X(z)= ¢y cosax + czsin az. From the initial conditions:
X(0)=0 = c3=0
X(e)=0 = e¢4sinac=0

So either ¢4 = 0, which is again the trivial solution, or ac = nw. Then a = n7n /e,

and X, (2) = sin(nwz/c) up to constant multiple. Since we are ignoring the
constant ¢4 anyway, we may as well assume n = 0,1,2,..., as negative values of
n only multiply the solution by —1 (sin is odd).

So the solutions are X,(x) = sin 2% for n = 0,1,2,... with eigenvalues A\ =

n?m?/c. (Notice that the trivial solution is included.)
p. 135. 2: Note that f(2) = sin z is already a Fourier sine series with coefficients by = 1
and b, = 0 for n # 1. By equation (5) on p. 131, the solution is

o0
u(z,t) = Z bye " Kt sin(nz) = e M sin z
n=1

p. 135. 3: We need to solve the system of PDEs:

w(x,t) = kugy(z,t)
uw(0,t) = 0
w(m,t) = wg
u(z,0) = f(z)
We know from Example 1 that
v(x,t) = kvg(z,t)
v(0,¢1) = 0
o(m,t) = 0
v(@,0) = f(z)



From Example 2,
wy(z,t

w(0,¢
(m,t

Ty

w(T,

)
)
)
w(z,0)
Add the corresponding equations

vi(@,t) + wy(z, 1)

v(0,1) + w(0,1)

v(m, 1)+ w(m,t)

v(z,0)+ w(z,0)

kwy,(x,t)

Uo

k(vmg($, t) + wxx(wv t))
0

f(z)

Hence v + w is a solution of this problem.



