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For the next three problems I will be using the new interval [�c; c]. Here the orthonormal

set corresponding to the Fourier series on [��; �] becomes f�ckg = fp�
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This last formula is what I'll use.
Also observe sometimes I change the de�nition of the functions in these problems to use

result one in the next section to replace � with =.

p. 85. 1:

f =

8<
:

0 �3 � x < 0
1 0 < x � 3
1
2

x = 0

9=
;

now note
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by result one in the next section - since f = 1
2
at 0; 3;�3.

p. 85 5.(a): By the refered to problem
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p. 85. 9: Our function is the periodic extention of
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(Where the values I choose at lc are provided by looking at result one telling us where
the series converges point wise). Note further that series is the odd extention of

f =

�
1 0 < x < c

0 x = 0; c

�

So the needed Fourier series is given by the Fourier sine series of this function squished
to this interval. From 1(b) in section 14 on [0; �] we have
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Hence our new series is
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Which by the next result one and the choices made is in fact equal to the given function
at each point.

p. 118. 1: From problem 4(a) on p. 56:

x2 =
�2

3
+ 4

1X
n=1

(�1)n
n2

cosnx0 < x < �

2



Extract the coe�cients from this Fourier series and transplant them into (14) on p.
113 to obtain

u(x; t) =
�2

3
+ 4

1X
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(�1)n
n2

e�n
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p. 118. 2: If u(x; y) = X(x)Y (y), then

uxx(x; y) = �uyy(x; y)
X 00(x)Y (y) = X(x)Y (y)

X 00(x)

X(x)
= �Y 00(y)

Y (y)

The left-hand side is a function of x and the right-hand side is a function of y, hence
they are both equal to a constant, say ��. This gives

X 00(x) + �X(x) = 0 and Y 00(y)� �Y (y) = 0

Since we are looking for interesting solutions, we can assume that X; Y 6= 0. Hence

0 = ux(0; y) = X 0(0)Y (y) ) X 0(0) = 0

0 = ux(�; y) = X 0(�)Y (y) ) X 0(�) = 0

0 = u(x; 0) = X(x)Y (0) ) Y (0) = 0

� = 0: Then X(x) = ax+ b and X 0(x) = a, so X 0(0) = 0 implies a = 0. So we can
choose X0(x) = 1 up to constant multiple. Solving for Y , we �nd Y (y) = cy + d,
and Y (0) = 0 forces d = 0. Hence Y0(y) = y up to constant multiple, and
u0(x; y) = y.

� < 0: Then X(x) = c1e
p
�x + c2e

�
p
�x and X 0(x) = c1

p
�e
p
�x � c2

p
�e
p
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0 = X 0(0) = (c1 � c2)
p
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p
�(e

p
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p
��.

But e
p
�� > 1 and e�

p
�� < 1 so this would force c1 = 0 and hence c2 = 0. The

result is X(x) = 0, which gives the trivial solution u(x; y) = 0.

� > 0: Then X(x) = c1 cos(
p
�x) + c2 sin(�

p
�x) and X 0(x) = �c1

p
� sin(

p
�x) +

c2
p
� cos(

p
��x). So 0 = X 0(0) = c2

p
� implies c2 = 0. Now use 0 = X 0(�) =

�c1
p
� sin(

p
��) to conclude either c1 = 0 (which would again yield the trivial

solution) or
p
�� = n� for any integer n. Hence Xn(x) = cosnx. Note that we

may restrict n to be a positive as cos is an even function and n = 0 just gives
X0(x) = 1, which we already have.

Now Y (y) = c3e
p
�y+c4e

�
p
�y = c3e

ny+c4e
�ny . The boundary condition Y (0) = 0

implies c4 = �c3 and Yn(y) = sinh ny up to constant multiple. Hence un(x; y) =
cosnx sinh ny.

So the general solution is u(x; y) = A0y +
P1

n=1An cosnx sinh ny. Comparing the
remaining boundary condition

f(x) = u(x; 2) = 2A0 +

1X
n=1

An cosnx sinh 2n
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with the Fourier series

f(x) =
a0

2
+

1X
n=1

an cosnx

for

an =
2

�

Z �

0

f(x) cosnx dx

gives

A0 =
1

2�

Z �

0

f(x) dx and An =
2

� sinh 2n

Z �

0

f(x) cosnx dx for n � 1

p. 118. 3: a:

X 00(x)T (t)� xtX(x)T 00(t) = 0

X 00(x)

xX(x)
=

tT 00(t)

T (t)
= ��

since the LHS is a function of x and the RHS is a function of t only.
Hence X 00(x) + �xX(x) = 0 and tT 00(t) + �T (t) = 0.

c: This is not a separable equation as each of the three terms contains both x and t.
p. 119. 7: This is trivial. Just use the linearity of di�erentiation.
p. 126. 1: Using equation (7) on p. 124, F (x) = A sin �x, and the solution is

y(x; t) =
F (x + at) + F (x� at)

2
=

A(sin(�x+ �at) + sin(�x� �at))

2
= A sin(�x) cos(�at)

This indeed satis�es:

0 = y(0; t) = A sin 0 cos(�at)

0 = y(1; t) = A sin � cos(�at)

0 = yt(x; 0) = �aA sin(�x) sin 0

A sin(�x) = y(x; 0) = A sin(�x) cos0

Also, y(x; t) is clearly continuous in x and t and yt(x; t) = �aA sin(�x) cos(�at) is
continuous in t.

p. 126. 2: This is almost exactly the same as the previous problem.
p. 127. 4: If y(x; t) = X(x)T (t), then

ytt(x; t) = a2yxx(x; t)

X(x)T 00(t) = a2X 00(x)T (t)

X 00(x)

X(x)
=

T 00(t)

a2T (t)

The left-hand side is a function of x and the right-hand side is a function of t, hence
they are both equal to a constant, say ��. This gives

X 00(x) + �X(x) = 0 and T 00(t) + �a2T (t) = 0
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Since we are looking for interesting solutions, we can assume that T;X 6= 0. Hence

0 = y(0; t) = X(0)T (t) ) X(0) = 0

0 = y(c; t) = X(c)T (t) ) X(c) = 0

0 = yt(x; 0) = X(x)T 0(0) ) T 0(0) = 0

p. 127. 5: Consider the following three cases:
� < 0: Let � =

p��. The solutions of X 00(x) + �X(x) = 0 are then X(x) =
c1e

�x + c2e
��x. Now

X(0) = 0 ) c2 = �c1
X(c) = 0 ) c1(e

�c � e��c) = 0

Since e�c � e��c = e�c � 1=e�c 6= 0 for c 6= 0, c1 = 0. So we only get the trivial
solution X0(x) = 0.

� = 0: Then X 00(x) = 0, and hence X(x) = ax + b. X(x) = 0 implies b = 0 and
X(c) = 0 implies a = 0. Again, this is just the trivial solution.

� > 0: Let � =
p
�. Then the solutions of X 00(x) + �X(x) = 0 are of the form

X(x) = c1 cos�x + c2 sin �x. From the initial conditions:

X(0) = 0 ) c3 = 0

X(c) = 0 ) c4 sin �c = 0

So either c4 = 0, which is again the trivial solution, or �c = n�. Then � = n�=c,
and Xn(x) = sin(n�x=c) up to constant multiple. Since we are ignoring the
constant c4 anyway, we may as well assume n = 0; 1; 2; : : : , as negative values of
n only multiply the solution by �1 (sin is odd).

So the solutions are Xn(x) = sin n�x
c

for n = 0; 1; 2; : : : with eigenvalues � =

n2�2=c2. (Notice that the trivial solution is included.)
p. 135. 2: Note that f(x) = sin x is already a Fourier sine series with coe�cients b1 = 1

and bn = 0 for n 6= 1. By equation (5) on p. 131, the solution is

u(x; t) =

1X
n=1

bne
�n2kt sin(nx) = e�kt sin x

p. 135. 3: We need to solve the system of PDEs:

ut(x; t) = kuxx(x; t)

u(0; t) = 0

u(�; t) = u0

u(x; 0) = f(x)

We know from Example 1 that

vt(x; t) = kvxx(x; t)

v(0; t) = 0

v(�; t) = 0

v(x; 0) = f(x)
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From Example 2,

wt(x; t) = kwxx(x; t)

w(0; t) = 0

w(�; t) = u0

w(x; 0) = 0

Add the corresponding equations

vt(x; t) + wt(x; t) = k(vxx(x; t) + wxx(x; t))

v(0; t) + w(0; t) = 0

v(�; t) + w(�; t) = u0

v(x; 0)+ w(x; 0) = f(x)

Hence v + w is a solution of this problem.
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