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p. 140. 1: Let u(x; t) =
P

1

n=1 Bn(t) sin(n�x). Then the equation becomes

1X
n=1

B0
n
(t) sin(n�x) =

1X
n=1

Bn(t)
�
�(n�)2 sin(n�x)

�
+

2

�

1X
n=1

(�1)n+1p(t)

n
sin(n�x)

After matching the coe�cients of sin(n�x) on the two sides, we get

B0
n
(t) + n2�2Bn(t) =

(�1)n+1p(t)

n

The �rst two boundary conditions are already satis�ed as sin 0 = 0 and sin n� = 0.

The last boundary condition turns into
1X
n=1

Bn(0) sin(n�x) = 0

which forces Bn(0) = 0 (a Fourier series is 0 if and only if all its coe�cients are 0).

Multiply the �rst order ODE above by the integrating factor e
R
n
2
�
2
dt = en

2
�
2
t to

obtain

en
2
�
2
tB0

n
(t) + n2�2en

2
�
2
tBn(t) =

2(�1)n+1

n�
p(t)en

2
�
2
t

�
en

2
�
2
tBn(t)

�
0

=
2(�1)n+1

n�
p(t)en

2
�
2
t

Solve by integrating both sides:

en
2
�
2
tBn(t) =

Z
2(�1)n+1

n�
p(t)en

2
�
2
t dt

en
2
�
2
tBn(t) =

2(�1)n+1

n�

Z
t

0

p(�)en
2
�
2
� d� + c

where we used
R
f(x) dx =

R
x

0
f(u) du+c. Now use the boundary condition Bn(0) = 0

to conclude c = 0. Hence

Bn(t) =
2(�1)n+1

n�
e�n

2
�
2
t

Z
t

0

p(�)en
2
�
2
� d� =

2(�1)n+1

n�

Z
t

0

p(�)en
2
�
2(��t) d�

and

u(x; t) =
2

�

1X
n=1

(�1)n+1

n
sin(n�x)

Z
t

0

p(�)en
2
�
2(��t) d�

p. 141. 2: Just evaluate the integral in the solution:

Z
t

0

aen
2
�
2(��t) d� =

aen
2
�
2(��t)

n2�2

�����
t

0

= a
1� e�n

2
�
2
t

n2�2
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and substitute this into the solution of the previous problem.

p. 148. 1.: The equations are:

uxx(x; y) + uyy(x; y) = 0

ux(0; y) = ux(�; y) = 0

u(x; 0) = 0

u(x; �) = f(x)

This is another separable di�erential equation leading to the two ODEs

X 00(x) + �X(x) = 0 X 0(0) = X 0(�) = 0

Y 00(y)� �Y (y) = 0 Y (0) = 0

These are easy to solve along the lines of problem 2 on p. 118 and give the results

X0(x) = 1, Xn(x) = cosnx and Y0(y) = y, Yn(y) = sinh ny for n � 1 up to constant

multiple.

Hence u(x; y) = A0y +
P

1

n=1 cosnx sinhny. Now use the last boundary condition

and the Fourier series of f(x):

u(x; �) = A0� +

1X
n=1

cosnx sinhn� = f(x) =
a0

2
+

1X
n=1

an cosnx

for

an =
2

�

Z
�

0

f(x) cosnx dx

Now compare coe�ecients and rejoice when you get the solution in the book.

p. 157. 7: A string is stretched over [0; �] and is initially at rest with y = f(x). With

air resistance the di�erential equation to solve is

ytt = yxx � 2�yt:

Separating variables gives

Xxx

X
=

Ttt + 2�Tt

T
= ��

Using the boundary conditions X(0) = X(�) = 0 we get X(x) = cn sin(nx). So

� = n2.

Now letting �n =
p
4n2 � �2 the linear O.D.E.

Ttt + 2�Tt + n2T

has the solutions T (t) = e��t(ln sin(�nt) + kn cos(�nt)). To �nd its boundary condi-

tions note Tt(0) = (��kn + ln) = 0 giving T (t) = cne
��( �

�n
sin(�n) + cos(�n)).

So our formal solution is

y(x; t) =

1X
n=1

cne
��t(

�

�n
sin(�nt) + cos(�nt)) sin(nx):
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Note assuming f(x) has a Fourier expansion yt(x; 0) = f(x) =
P
1

n=1 bn sin(nx)

gives

y(x; 0) =

1X
n=1

cn sin(nx) =

1X
n=1

bn sin(nx)

So cn = bn and the formal solution is:

y(x; t) =

1X
n=1

bne
��t(

�

�n
sin(�nt) + cos(�nt) sin(nx):

p. 157. 12: Explore ytt = a2yxx + Ax sin(!t) with y(0; t) = y(c; t) = 0 and y(x; 0) =

yt(x; 0) = 0.

The assume technique is needed here, i.e. from y(0; t) = y(c; t) = 0 we assume that

a solution is in the form
P

1

n=1Bn(t)sin(
n�

c
x). Now we would like to plug this in to

the equation, but to do so we must recall x = 2�
c

P
1

n=1
(�1)n+1

n
sin(�n

c
x). Plugging in

this and our assumed solution form now gives us.

1X
n=1

(
d2

dt2
Bn + (

n�

c
)
2

Bn +
2�

c

(�1)n

n
sin(!t)) sin(

na�

c
x) = 0

Now observe from the text that the solutions to this O.D.E are

Bn(t) =
2(�1)nc2

c2!2n� n2�2a2
(
!c

n�a
sin(

n�a

c
t)� sin(!t))

when ! 6= n�a

c
and

Bn(t) =
2(�1)nc

2n2�a
(
1

a
sin(!t)� sin(!t))

When ! = n�a

c
.

So the solution that increase in size linearly with time occur only at the resonance

values ! = n�a

c
. (Note we've also found the solution.)

p. 176. 1: a: Note that if x = es, then xX 0(x) = esX 0(es) =
dX(es)

ds
and x(xX 0(x))0 =

es(esX 0(es))0 =
d
2
X(es)

ds2
. So multiply the equation by x and substitute x = es to

get

d2X

ds2
+ �X = 0 (0 < s < ln b)

where X is a function of s. When x = 1, s = 0 and when x = b, s = ln b and it is

at these two points that X = 0.

We already know the solution of a Sturm-Liouville problem with such boundary

conditions. Let �n = n�= ln b for n = 1; 2; : : : . Then the eigenvalues are �n = �2
n

and the eigenfunctions are Xn(s) = sin�ns = sin(�n ln x).

b: We need to showZ
b

1

Xm(x)Xn(x)p(x) dx =

Z
b

1

sin
�m�

ln b
ln x

�
sin
� n�
ln b

ln x
� 1

x
dx = 0
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when m 6= n. Substitute s = (�= ln b) lnx:Z
�

0

sinms sinns ds = 0

for m 6= n by (9) on p. 175.

p. 184. 2: Here we are dealing with

X
00

+ �X = 0 X(0) = 0 hX(1) +X
0

(1) = 0

with h � 0 , so a1a2 = 0 � 0 and b1b2 = h � 0 ; and by the lemma there are no

negative eigen-values (� � 0).

Now for � = 0 we have that X(x) = ax+ b giving

�
0

0

�
=

�
X(0)

hX(1)+X
0

(1)

�
=

�
b

ha + hb+ a

�
=

�
0 1

(1 + h) h

��
a

b

�
:

Now note that for this to have any non trivial solutions�
0 1

(1 + h) h

�

would need to have a null space so be non-invertible. But since h > 0

det

�
0 1

(1 + h) h

�
= �(1 + h) 6= 0:

So it is invertible and there are no nontrivial solutions with � = 0.

Similarly for � > 0 we can call � = �2 and we have

X(x) = a sin(�x) + b cos(�x):

So

�
0

0

�
=

�
X(0)

hX(1) +X
0

(1)

�
=

�
b

ah sin(�) + bh cos(�) + a� cos(�)� b� sin(�)

�

=

�
0 1

h sin(�) + � cos(�) h cos(�)� � sin(�)

� �
a

b

�

Once again we are detecting the invertabilty of this matrix so we look at it's deter-
minant an note

det

�
0 1

h sin(�) + � cos(�) h cos(�)� � sin(�)

�
= �(h sin(�) + � cos(�)):

So we have non trivial solution exact for � > 0 when h sin(�x) + � cos(�) = 0 or
��

h
= tan(�). Looking at the graph these are indexed by an increasing sequence of

number �n.

Once again the null space is b = 0 so our non-normalized eigen-functions areX(x) =

a sin(�nx).

To normalize we need a such that

1 = (a sin(�nx); a sin(�nx)) = a2
Z 1

0

(sin(�nx))
2
dx:
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As above

a =
1q

1
2
+ �1

4�n
(sin(2�n))

if 1
2
+ �1

4�n
(sin(2�n)) > 0,

Now looking at the intersection of ��
h

and tan(�) we see that the smallest � is once

again �1 �
�

2
. So this expression makes sense and �nishes the problem.

p. 185. 4: Here we are dealing with

X
00

+ �X = 0 X(0) = 0 X(1)�X
0

(1) = 0:

Now for � = 0 we have that

X(x) = ax+ b

So

�
0

0

�
=

�
X(0)

X(1)�X
0

(1)

�
=

�
b

a+ b� a

�
=

�
0 1

0 1

� �
a

b

�

Now note that for this to have any non-trivial solutions�
0 1

0 1

�

would need to have a null space so be non-invertible.

And in fact

det

�
0 1

0 1

�
= 0

Looking at the matrix the null space is where b = 0 and a is arbitrary.

So X(x) = aX is a solution. To normalize we need a such that

1 = (ax; ax)) = a2
Z 1

0

x2dx = a2
1

3

Or a =
p
3.

Similarly for � > 0 we can call � = �2 and we have

X(x) = a sin(�x) + b cos(�x)

So

�
0

0

�
=

�
X(0)

X(1)�X
0

(1)

�
=

�
b

a sin(�) + b cos(�)� a� cos(�) + b� sin(�)

�

=

�
0 1

(sin(�)� � cos(�)) (cos(�) + � sin(�))

��
a

b

�
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Once again we are detecting the invertabilty of this matrix so we look at it's deter-

minant an note

det

�
0 1

sin(�)� � cos(�) cos(�) + � sin(�)

�
= sin(�)� � cos(�):

So we have non trivial solution exact for � > 0 where h sin(�x) + � cos(�) = 0 or

� = tan(�). Looking at the graph these are indexed by an increasing sequence of

number �n.

Once again the null-space is b = 0 so our non normalized eigen-functions areX(x) =

a sin(�nx).

As in problem one to normalize we need to make sense out of

a =
1q

1
2
� 1

4�n
(sin(2�n))

:

Equivalently we need 1
2
+ �1

4�n
(sin(2�n)) > 0.

Once again looking at the intersection of � and tan(�) we see that the smallest �

is once again �1 �
�

2
(here since tan(x) is concave up in (0; �

2
) and � is its tangent

line a zero - so the �rst intersection will not occur in (0; �
2
)). So this expression makes

sense and gives us the normalized eigen-functions when � > 0.

For this problem we must also look into the � < 0, since our corollary fails here.

The solution here is

X(x) = ae�x + be��x:

�
0

0

�
=

�
X(0)

X(1)�X
0

(1)

�
=

�
a + b

(�a� + a)e� + (b+ �b)e��

�

=

�
1 1

(1� �)e� (1 + �)e��

� �
a

b

�

det

�
1 1

(1� �)e� (1 + �)e��

�
= (1 + �)e�� + (�1 + �)e�:

So there is a non trivial solution when (1+�)e��+(�1+�)e� = 0 or ealpha�e�� =

�(e� + e��). Divide the last equation by 2 to get sinh � = � cosh�.

This can't happen. The way to see this is to look at the derivatives of these functions.

The derivative of the LHS is cosh� and the derivative of the RHS is cosh�+� sinh �.

For � > 0,

cosh� < cosh�+ � sinh �

hence the RHS increases faster than the LHS. When � = 0, sinh� = cosh� +

� sinh�� cosh�, but this can't happen ever again for � > 0 because the RHS will

always be larger.
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p. 191. 2: Use the general formula

1 =

1X
n=1

�n(x)

Z
c

0

1 � �n(x) dx

with �n(x) =
q

2
c
sin�nx and �n =

(2n�1)�

2c
.

1 =

1X
n=1

r
2

c
sin �nxint

c

0

r
2

c
sin�nx dx

=

1X
n=1

2

c
sin�nx

� cos�nx

�n

����
c

0

=

1X
n=1

2

c�n
sin �nx

�
cos 0� cos

(2n� 1)�

2

�

=
2

c

1X
n=1

sin�nx�n

p. 304. 1: a: Z 1

�1

Pn(x) dx =

Z 1

�1

P0(x)Pn(x) dx = 0

for n = 1; 2; 3; : : : by orthogonality of P0 and Pn.

b: Z 1

�1

(Ax+ B)Pn(x) dx =

Z 1

�1

(AP0(x) + BP1(x)Pn(x) dx

= A

Z 1

�1

P1(x)Pn(x) dx+B

Z 1

�1

P0(x)Pn(x) = 0

for n = 2; 3; 4; : : : by orthogonality of P0 and P1 to Pn.
p. 304. 2: All you need to do is evaluate six integrals. Here are two of them

Z 1

�1

P0(x)P2(x) dx =
1

2

Z 1

�1

3x2 � 1 dx =
x3

2
�

x

2

����
1

�1

= 0

Z 1

�1

P1(x)P3(x) dx =
1

2

Z 1

�1

5x4 � 3x2 dx =
x5

2
�

x3

2

����
1

�1

= 0

Now note that Pm(x)Pn(x) is an odd function whenever one of m and n is odd and

the other is even and the integral of an odd function from �1 to 1 is always 0. This

takes care of the remaining four.

p. 304. 3: a: Note that P2m(x)P2n(x) is an even function (product of two even func-

tions), hence

int10P2m(x)P2n(x) dx =
1

2
int1

�1P2m(x)P2n(x) dx =

�
0 if m 6= n

1
4n+1

if m = n
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by (15) on p. 304. Hence jjP2n(x)jj = 1=
p
4n+ 1 with respect to this inner

product, and
p
4n + 1P2n(x) is then a unit vector.

b: You can do the same as in (a). Note that the product of two odd functions is
even.

p. 304. 4: Just integrate both sides of (10) from a to 1:

(2n+ 1)

Z 1

a

Pn(x) dx =

Z 1

a

P 0
n+1(x) + P 0

n�1(x) dx

Z 1

a

Pn(x) dx =
1

2n+ 1
(Pn+1(1)� Pn+1(a)� Pn�1(1) + Pn�1(a))

Z 1

a

Pn(x) dx =
1

2n+ 1
(Pn�1(a)� Pn+1(a))

as Pn+1(1) = Pn�1(1) = 1.

p. 310. 1: Observe that F (x) is the odd extension of the function f(x) = 1 to the

interval (�1; 1). (The value at x = 0 is the average of the left limit and the right limit,

exactly what we want for Fourier analysis.) We already know from (10) on p. 76 that

1 =

1X
n=0

(P2n(0)� P2n+2(0))P2n+1(x) (0 < x < 1)

Hence

F (x) =

1X
n=0

(P2n(0)� P2n+2(0))P2n+1(x) (�1 < x < 1)

Add 1=2 = 1=2P0(x) to obtain

g(x) =
1

2
+
F (x)

2
=

P0(x)

2
+

1

2

1X
n=0

(P2n(0)� P2n+2(0))P2n+1(x) (�1 < x < 1)

p. 310. 2: This was only recommended, but it's interesting.

a: f(x) is continuous and piecewise smooth (the only point where it is not di�eren-

tiable is x = 0), hence it f(x) is equal to its Legendre series by the theorem on p.

308.

b: Note that P1(x)P2n+1(x) is an even function. Hence

A2n+1 =
2(2n+ 1) + 1

2

Z 1

�1

f(x)P2n+1(x) dx

=
4n + 3

2

Z 1

0

xP2n+1(x) dx =
4n + 3

2

Z 1

0

P1(x)P2n+1(x) dx

=
4n + 3

4

Z 1

�1

P1(x)P2n+1(x) dx =

�
1
2

if n = 0

0 if n 6= 0

c: Just do the integration

An =
2n+ 1

2

Z 1

�1

f(x)Pn(x) dx =
2n+ 1

2

Z 1

0

xPn(x) dx

for n = 0; 2; 4.
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