MATH 110, HOMEWORK SOLUTION SET 3
Imre Tuba

June 5, 1999

p. 140. 1: Let u(xz,t) => .7 B,(t)sin(nwz). Then the equation becomes

1)n—l—1 (t)
E B! (t)sin(nr E B 7r n(nr E 7] i
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After matching the coefﬁ(:lents of sin(nma) on the two sides, we get
(=" p(t)
n

The first two boundary conditions are already satisfied as sin 0 = 0 and sin n7 = 0.
The last boundary condition turns into

ZB )sin(nrz) =0

Bl (t) 4+ n*1?B,(t) =

which forces B, (0) = 0 (a Fourier series is 0 if and only if all its coefficients are 0).

Multiply the first order ODE above by the integrating factor B
obtain
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Solve by integrating both sides:
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nmw

2(—-1 n+1 1
6”2”2tBn(t) = 7( ) / p(T)e”27T2T dr + ¢

nm 0

where we used [ f(z)dx = [ f(u)du+c. Now use the boundary condition B,(0) =0
to conclude ¢ = 0. Hence

9(_1)t1 i 9(—1)ynt1 i
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p. 141. 2: Just evaluate the integral in the solution:




and substitute this into the solution of the previous problem.
p. 148. 1.: The equations are:

(z,y) 0
ux(O y)=ux(m,y) = 0
(,0) 0

u(zx, =
wz,m) = f(x)
This is another separable differential equation leading to the two ODEs
X"z)+AX(z) = 0 X'0)=X'(m)=0
Y'y)=AY(y) = 0 Y(0)=0

These are easy to solve along the lines of problem 2 on p. 118 and give the results
Xo(z) =1, X,(2) = cosna and Yo(y) = y, Y,(y) = sinh ny for n > 1 up to constant
multiple.

Hence u(z,y) = Aoy + >, cosnz sinhny. Now use the last boundary condition
and the Fourier series of f(z):

uw(z,m) = Aom + Zcos nasinhnr = f(z) = % + Zan cos na

n=1
2 s
= —/ f(z)cosnz dx
TJo

Now compare coeffecients and rejoice when you get the solution in the book.
p. 157. 7: A string is stretched over [0, 7] and is initially at rest with y = f(z). With
air resistance the differential equation to solve is

for

Yit = Yoo — 2DY1-
Separating variables gives
Xow Ty + 28T,
X T
Using the boundary conditions X (0) = X(7) = 0 we get X(2) = ¢, sin(nz). So
A =n?
Now letting a,, = y/4n? — 32 the linear O.D.E.
Ttt + QﬁTt + n2T
has the solutions T(t) = e~ (I, sin(a,t) + k, cos(a,t)). To find its boundary condi-
tions note T3(0) = (—fk, 4+ {,,) = 0 giving T'(¢) = cne_ﬁ(a% sin(a, ) 4 cos(ay,)).
So our formal solution is

= -

y(z,t) = Z cne_m(aﬂ sin(ayt) + cos(ay,t)) sin(nz).
n=1 "



Note assuming f(z) has a Fourier expansion y,(2,0) = f(z) = Y -7, b, sin(nz)
gives

y(z,0) = Z ensin(ne) = Z b, sin(nx)
n=1 n=1

So ¢, = b, and the formal solution is:

y(z,t) = nz:; bne_ﬁt(aﬂ—n sin(a,t) + cos(a,t) sin(na).

p. 157. 12: Explore y; = a?y,, + Az sin(wt) with y(0,¢) = y(c,t) = 0 and y(z,0) =
yi(x,0) = 0.
The assume technique is needed here, i.e. from y(0,t) = y(c,?) = 0 we assume that

a solution is in the form 7, B, (t)sin("*z). Now we would like to plug this in to
(=n"*

the equation, but to do so we must recall z = 225 -
C n=
this and our assumed solution form now gives us.

sin("*x). Plugging in

. d2 nw .2 27 (—=1)" . . naw
Z(ﬁBn + (?) B, + - sin(wt)) sm(?x) =0

n=1
Now observe from the text that the solutions to this O.D.E are

2(—1)"c? we . nTa .
c2w?n — n27r2a2(n7ra sin c t) - sin(wt))

Ba(t) =

when w # “Z% and

2(=1)"¢,1
B, (t) = ——(—sin(wt) — sin(wt
(0= A0 L non) — sinfen))
When w = #7£.
So the solution that increase in size linearly with time occur only at the resonance

values w = *Z%. (Note we’ve also found the solution.)

p. 176. 1: a: Note that if 2 = €, then 2 X'(2) = e* X'(e*) = X and z(zX'(2)) =

ds
e*(e* X'(e®)) = %. So multiply the equation by z and substitute 2 = €® to
get
d?X

where X is a function of s. When z = 1, s = 0 and when 2 = b, s = In b and it is
at these two points that X = 0.
We already know the solution of a Sturm-Liouville problem with such boundary
conditions. Let a,, = nw/Inb for n = 1,2,.... Then the eigenvalues are \, = a?
and the eigenfunctions are X,,(s) = sin o, s = sin(a, In z).

b: We need to show

b b mm nmw 1
X)X, (x)p(a dw:/ sin | —1Ina)sin{—Inz)—daz =0
/1 (2)Xn(z)p(2) 1 (1 b ) (1 b )x

n n



when m # n. Substitute s = (7/Inb)In a:
/ sinmssinnsds = 0
0

for m # n by (9) on p. 175.
p. 184. 2: Here we are dealing with
X"+AX =0 X(0)=0 RX(1)+ X'(1)=0
with h > 0, so ajay = 0 < 0 and b6y = h > 0 ; and by the lemma there are no
negative eigen-values (A > 0).
Now for A = 0 we have that X () = az 4 b giving

[8]:[f)(f()l)m’(l)]:[2a+hb+a]:[<01+h> H[Z]-

Now note that for this to have any non trivial solutions

0 1
(L+h) h
would need to have a null space so be non-invertible. But since A > 0

det[(()l_l_h) H = —(1+h)£0.

So it is invertible and there are no nontrivial solutions with A = 0.
Similarly for A > 0 we can call A = a? and we have

X(z) = asin(az) + bcos(az).
5o

[ 8 ] - [ 2()(((2)1)+x(1) ] - [ zhsin(a)—l—bhcos(a)—l—aa cos(a) — ba sin(a) ]

- [ (f)zsin(a)—l-acos(a) llzcos(a)—asin(a) ] [Z]

Once again we are detecting the invertabilty of this matrix so we look at it’s deter-
minant an note

0 1
hsin(a) 4+ acos(a) hcos(a) — asin(a

det [ ) ] = —(hsin(a) + a cos(a)).

So we have non trivial solution exact for o > 0 when hsin(az) + acos(a) = 0 or
—* = tan(a). Looking at the graph these are indexed by an increasing sequence of
number a,.

Once again the null space is b = 0 so our non-normalized eigen-functions are X (z) =
asin(o,).
To normalize we need a such that

1 = (asin(a,2), asin(a,z)) = a2/0 (sin(a,z)) dz.



As above
1

a= \/% n ﬁ(sm(mn))

if 1+ ﬁ(sin@an)) >0,
Now looking at the intersection of 5* and tan(a) we see that the smallest « is once
again ay > . So this expression makes sense and finishes the problem.
p.- 185. 4: Here we are dealing with
X"4+2X =0 X(0)=0 X(H-X'(1)=0.
Now for A = 0 we have that

So

—_ =

0] [ X(0) b |0

0] [ X(MW)-X'(1)]  |a+b-—a] [0

Now note that for this to have any non-trivial solutions
0 1
0 1

would need to have a null space so be non-invertible.

And in fact
0 1
det [ 01 ] =0

1]

Looking at the matrix the null space is where b = 0 and « is arbitrary.
So X(z) = aX is a solution. To normalize we need a such that

W =

1
1= (az,ax)) = az/ vide = d?
0

Or a = /3.

Similarly for A > 0 we can call A = a? and we have

X(z) = asin(az) + bcos(ax)

[ 8 ] - [ ?E(l)i—X'(l) ] - [ 2sin(a)—|—bcos(a)— ac cos(a) + barsin(a) ]

= [ ?Sin(a)_ a cos(a)) (1cos(a)—|-asin(a)) ] [ b ]



Once again we are detecting the invertabilty of this matrix so we look at it’s deter-
minant an note

0 1

det sin(a) — acos(a) cos(a) + asin(a)

= sin(a) — a cos(a).

So we have non trivial solution exact for o > 0 where hsin(az) + acos(a) = 0 or
a = tan(a). Looking at the graph these are indexed by an increasing sequence of
number a,.

Once again the null-space is b = 0 so our non normalized eigen-functions are X (z) =
asin(o,).

As in problem one to normalize we need to make sense out of

1 .
V3 - e sin(2a,))

Equivalently we need § 4 == (sin(2a,)) > 0.

a =

Once again looking at the intersection of @ and tan(a) we see that the smallest a
is once again oy > 5 (here since tan(z) is concave up in (0,7) and « is its tangent
line a zero - so the first intersection will not occur in (0, 7)). So this expression makes
sense and gives us the normalized eigen-functions when A > 0.

For this problem we must also look into the A < 0, since our corollary fails here.

The solution here is

X(z)= ae® 4 be™ 7.

det[1 1

(1—a)e® (14 a)e™@ ] =(1+a)e™ @ +(~14a)e”.

alpha _ ,—a

So there is a non trivial solution when (14 a)e™+(—14+a)e* =0ore e =
a(e” + e~®). Divide the last equation by 2 to get sinh @ = a cosh a.

This can’t happen. The way to see this is to look at the derivatives of these functions.
The derivative of the LHS is cosh a and the derivative of the RHS is cosh @ + o sinh .

For o > 0,
cosh o < cosh o + asinh «

hence the RHS increases faster than the LHS. When a = 0, sinha = cosha +
asinh aa cosh a, but this can’t happen ever again for a > 0 because the RHS will
always be larger.



p. 191. 2: Use the general formula

1= Z%(@/Ocl - () da

with ¢, (z) = \/gsin o,z and «,, = w

o0
2, e 12
1 = E —sin ayxintgy/ — sin ayx da
¢ ¢
n=1
o0
2 . —cos a2 |©
= E —sina,t ———
e Qay, 0
o0
2 (2n — 1)m
= E —sin a,x | cos 0 — cos ———
v cap 2
n=—

00
2 .

= —E sin a, xa,
C
n=1

p. 304. 1: a:

/1 Po(z) da = /1 Po(2)Pu(z)dz = 0

-1 -1
for n = 1,2,3,... by orthogonality of Fy and P,.
b:

/1 (Az + B)Po(2) do = /1 (APy(2) + BPi(2)Po(z) da

-1 -1

1

_ A/l Pu(2) () do + B/ Po(2)Py(z) = 0

-1 -1
for n = 2,3.4,... by orthogonality of Fy and P, to P,.
p. 304. 2: All you need to do is evaluate six integrals. Here are two of them

1

1 Lo PR
P P d = — 3 2_1d - - _Z :0
/_1 o(z)Pa() da 2/_1 z r= 53 3
! 1 1 5 31
[ A A A .
-1 2/ 2 2],

Now note that P, (z)P,(z) is an odd function whenever one of m and n is odd and
the other is even and the integral of an odd function from —1 to 1 is always 0. This
takes care of the remaining four.

p. 304. 3: a: Note that Py, (2)Ps,(2) is an even function (product of two even func-
tions), hence
inty Py (2) Pyp(2) do = %intl_ngm(w)Pgn(x) de = { 2n1-|-1 i Z i Z




by (15) on p. 304. Hence ||Po,(2)|] = 1/v/4n+ 1 with respect to this inner

product, and v/4n 4+ 1Py, () is then a unit vector.
b: You can do the same as in (a). Note that the product of two odd functions is

ever.
p. 304. 4: Just integrate both sides of (10) from « to 1:

(2n—|—1)/ P, (z)dz = /P/%H(x)—l—P?’%_l(x)dx

[ Borde = o (Pan() = Paa(@) = Pa(1) 4 P (@)
[ Blode = o (P - Pa@)

as Pn_|_1(1) = Pn_l(l) = 1.

p. 310. 1: Observe that F(z) is the odd extension of the function f(z) = 1 to the
interval (—1,1). (The value at 2 = 0 is the average of the left limit and the right limit,
exactly what we want for Fourier analysis.) We already know from (10) on p. 76 that

o0

1= S (PO = PonsO) P () (0< 2 < 1)
Hence i
F() = S (P 0) ~ PouaO) Pauale)  (~1 <z < 1)
Add 1/2=1 /QPS(ZO) to obtain
ooy = 1+ 10 Do) %f%uan(m C PaaO)Pan(e)  (—l<a<1)

p. 310. 2: This was only recommended, but it’s interesting.
a: f(z)is continuous and piecewise smooth (the only point where it is not differen-
tiable is # = 0), hence it f() is equal to its Legendre series by the theorem on p.
308.
b: Note that Pi(z)Ps,41(z) is an even function. Hence

22n+1)+1 [T
Agnpr = —( 5 ) / J(@)Pontr () do
-1

dn+3 1 1
= 5 / e Pypyq(2)de = 5 / Py(2)Papy1() da
0 0

_ 4dn+3 [ 3 ifn=
! /_1 Pl(x)Pz”“(gc)dw_{ 0 ifn#£0
c: Just do the integration

om+1 [ 1
A, = n2—|— /_lf(x)Pn(x)dx: 5 /OxPn(x)dw

for n =0,2.4.



