MATH 110, HOMEWORK SOLUTION SET 3 Imre Tuba June 5, 1999

p. 140. 1: Let $u(x,t) = \sum_{n=1}^{\infty} B_n(t) \sin(n\pi x)$. Then the equation becomes $\sum_{n=1}^{\infty} B'_n(t) \sin(n\pi x) = \sum_{n=1}^{\infty} B_n(t) \left(-(n\pi)^2 \sin(n\pi x) \right) + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1} p(t)}{n} \sin(n\pi x)$

After matching the coefficients of $sin(n\pi x)$ on the two sides, we get

$$B'_{n}(t) + n^{2}\pi^{2}B_{n}(t) = \frac{(-1)^{n+1}p(t)}{n}$$

The first two boundary conditions are already satisfied as $\sin 0 = 0$ and $\sin n\pi = 0$. The last boundary condition turns into

$$\sum_{n=1}^{\infty} B_n(0) \sin(n\pi x) = 0$$

which forces $B_n(0) = 0$ (a Fourier series is 0 if and only if all its coefficients are 0). Multiply the first order ODE above by the integrating factor $e^{\int n^2 \pi^2 dt} = e^{n^2 \pi^2 t}$ to obtain

$$e^{n^2 \pi^2 t} B'_n(t) + n^2 \pi^2 e^{n^2 \pi^2 t} B_n(t) = \frac{2(-1)^{n+1}}{n\pi} p(t) e^{n^2 \pi^2 t} \left(e^{n^2 \pi^2 t} B_n(t) \right)' = \frac{2(-1)^{n+1}}{n\pi} p(t) e^{n^2 \pi^2 t}$$

Solve by integrating both sides:

$$e^{n^2 \pi^2 t} B_n(t) = \int \frac{2(-1)^{n+1}}{n\pi} p(t) e^{n^2 \pi^2 t} dt$$
$$e^{n^2 \pi^2 t} B_n(t) = \frac{2(-1)^{n+1}}{n\pi} \int_0^t p(\tau) e^{n^2 \pi^2 \tau} d\tau + c$$

where we used $\int f(x) dx = \int_0^x f(u) du + c$. Now use the boundary condition $B_n(0) = 0$ to conclude c = 0. Hence

$$B_n(t) = \frac{2(-1)^{n+1}}{n\pi} e^{-n^2 \pi^2 t} \int_0^t p(\tau) e^{n^2 \pi^2 \tau} d\tau = \frac{2(-1)^{n+1}}{n\pi} \int_0^t p(\tau) e^{n^2 \pi^2 (\tau-t)} d\tau$$

and

$$u(x,t) = \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin(n\pi x) \int_0^t p(\tau) e^{n^2 \pi^2 (\tau - t)} d\tau$$

p. 141. 2: Just evaluate the integral in the solution:

$$\int_0^t a e^{n^2 \pi^2 (\tau - t)} d\tau = \left. \frac{a e^{n^2 \pi^2 (\tau - t)}}{n^2 \pi^2} \right|_0^t = \left. a \frac{1 - e^{-n^2 \pi^2 t}}{n^2 \pi^2} \right|_0^t$$

and substitute this into the solution of the previous problem.

p. 148. 1.: The equations are:

$$u_{xx}(x, y) + u_{yy}(x, y) = 0$$

$$u_x(0, y) = u_x(\pi, y) = 0$$

$$u(x, 0) = 0$$

$$u(x, \pi) = f(x)$$

This is another separable differential equation leading to the two ODEs

$$\begin{array}{lll} X''(x) + \lambda X(x) &= 0 & X'(0) = X'(\pi) = 0 \\ Y''(y) - \lambda Y(y) &= 0 & Y(0) = 0 \end{array}$$

These are easy to solve along the lines of problem 2 on p. 118 and give the results $X_0(x) = 1$, $X_n(x) = \cos nx$ and $Y_0(y) = y$, $Y_n(y) = \sinh ny$ for $n \ge 1$ up to constant multiple.

Hence $u(x,y) = A_0 y + \sum_{n=1}^{\infty} \cos nx \sinh ny$. Now use the last boundary condition and the Fourier series of f(x):

$$u(x,\pi) = A_0\pi + \sum_{n=1}^{\infty} \cos nx \sinh n\pi = f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx$$

for

$$a_n = \frac{2}{\pi} \int_0^\pi f(x) \cos nx \, dx$$

Now compare coeffecients and rejoice when you get the solution in the book.

p. 157. 7: A string is stretched over $[0, \pi]$ and is initially at rest with y = f(x). With air resistance the differential equation to solve is

$$y_{tt} = y_{xx} - 2\beta y_t.$$

Separating variables gives

$$\frac{X_{xx}}{X} = \frac{T_{tt} + 2\beta T_t}{T} = -\lambda$$

Using the boundary conditions $X(0) = X(\pi) = 0$ we get $X(x) = c_n \sin(nx)$. So $\lambda = n^2$.

Now letting $\alpha_n = \sqrt{4n^2 - \beta^2}$ the linear O.D.E.

$$T_{tt} + 2\beta T_t + n^2 T$$

has the solutions $T(t) = e^{-\beta t}(l_n \sin(\alpha_n t) + k_n \cos(\alpha_n t))$. To find its boundary conditions note $T_t(0) = (-\beta k_n + l_n) = 0$ giving $T(t) = c_n e^{-\beta} (\frac{\beta}{\alpha_n} \sin(\alpha_n) + \cos(\alpha_n))$.

So our formal solution is

$$y(x,t) = \sum_{n=1}^{\infty} c_n e^{-\beta t} \left(\frac{\beta}{\alpha_n} \sin(\alpha_n t) + \cos(\alpha_n t)\right) \sin(nx).$$

Note assuming f(x) has a Fourier expansion $y_t(x,0) = f(x) = \sum_{n=1}^{\infty} b_n \sin(nx)$ gives

$$y(x,0) = \sum_{n=1}^{\infty} cn \sin(nx) = \sum_{n=1}^{\infty} b_n \sin(nx)$$

So $c_n = b_n$ and the formal solution is:

$$y(x,t) = \sum_{n=1}^{\infty} b_n e^{-\beta t} \left(\frac{\beta}{\alpha_n} \sin(\alpha_n t) + \cos(\alpha_n t) \sin(nx)\right).$$

p. 157. 12: Explore $y_{tt} = a^2 y_{xx} + Ax \sin(\omega t)$ with y(0,t) = y(c,t) = 0 and $y(x,0) = y_t(x,0) = 0$.

The assume technique is needed here, i.e. from y(0, t) = y(c, t) = 0 we assume that a solution is in the form $\sum_{n=1}^{\infty} B_n(t) \sin(\frac{n\pi}{c}x)$. Now we would like to plug this in to the equation, but to do so we must recall $x = \frac{2\pi}{c} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin(\frac{\pi n}{c}x)$. Plugging in this and our assumed solution form now gives us.

$$\sum_{n=1}^{\infty} \left(\frac{d^2}{dt^2} B_n + \left(\frac{n\pi}{c}\right)^2 B_n + \frac{2\pi}{c} \frac{(-1)^n}{n} \sin(\omega t)\right) \sin(\frac{na\pi}{c} x) = 0$$

Now observe from the text that the solutions to this O.D.E are

$$B_n(t) = \frac{2(-1)^n c^2}{c^2 \omega^2 n - n^2 \pi^2 a^2} (\frac{\omega c}{n \pi a} \sin(\frac{n \pi a}{c} t) - \sin(\omega t))$$

when $\omega \neq \frac{n\pi a}{c}$ and

$$B_n(t) = \frac{2(-1)^n c}{2n^2 \pi a} \left(\frac{1}{a}\sin(\omega t) - \sin(\omega t)\right)$$

When $\omega = \frac{n\pi a}{c}$.

So the solution that increase in size linearly with time occur only at the resonance values $\omega = \frac{n\pi a}{c}$. (Note we've also found the solution.)

p. 176. 1: a: Note that if $x = e^s$, then $xX'(x) = e^sX'(e^s) = \frac{dX(e^s)}{ds}$ and $x(xX'(x))' = e^s(e^sX'(e^s))' = \frac{d^2X(e^s)}{ds^2}$. So multiply the equation by x and substitute $x = e^s$ to get

$$\frac{d^2 X}{ds^2} + \lambda X = 0 \qquad (0 < s < \ln b)$$

where X is a function of s. When x = 1, s = 0 and when x = b, $s = \ln b$ and it is at these two points that X = 0.

We already know the solution of a Sturm-Liouville problem with such boundary conditions. Let $\alpha_n = n\pi/\ln b$ for $n = 1, 2, \ldots$. Then the eigenvalues are $\lambda_n = \alpha_n^2$ and the eigenfunctions are $X_n(s) = \sin \alpha_n s = \sin(\alpha_n \ln x)$.

b: We need to show

$$\int_{1}^{b} X_{m}(x) X_{n}(x) p(x) dx = \int_{1}^{b} \sin\left(\frac{m\pi}{\ln b} \ln x\right) \sin\left(\frac{n\pi}{\ln b} \ln x\right) \frac{1}{x} dx = 0$$

when $m \neq n$. Substitute $s = (\pi / \ln b) \ln x$:

$$\int_0^\pi \sin ms \sin ns \, ds = 0$$

for $m \neq n$ by (9) on p. 175.

p. 184. 2: Here we are dealing with

$$X'' + \lambda X = 0 X(0) = 0 hX(1) + X'(1) = 0$$

with $h \ge 0$, so $a_1a_2 = 0 \le 0$ and $b_1b_2 = h \ge 0$; and by the lemma there are no negative eigen-values $(\lambda \ge 0)$.

Now for $\lambda = 0$ we have that X(x) = ax + b giving

$$\begin{bmatrix} 0\\0 \end{bmatrix} = \begin{bmatrix} X(0)\\hX(1) + X'(1) \end{bmatrix} = \begin{bmatrix} b\\ha + hb + a \end{bmatrix} = \begin{bmatrix} 0 & 1\\(1+h) & h \end{bmatrix} \begin{bmatrix} a\\b \end{bmatrix}.$$

Now note that for this to have any non trivial solutions

$$\begin{bmatrix} 0 & 1\\ (1+h) & h \end{bmatrix}$$

would need to have a null space so be non-invertible. But since h > 0

$$\det \begin{bmatrix} 0 & 1\\ (1+h) & h \end{bmatrix} = -(1+h) \neq 0.$$

So it is invertible and there are no nontrivial solutions with $\lambda = 0$. Similarly for $\lambda > 0$ we can call $\lambda = \alpha^2$ and we have

$$X(x) = a\sin(\alpha x) + b\cos(\alpha x).$$

 So

$$\begin{bmatrix} 0\\0 \end{bmatrix} = \begin{bmatrix} X(0)\\hX(1) + X'(1) \end{bmatrix} = \begin{bmatrix} b\\ah\sin(\alpha) + bh\cos(\alpha) + a\alpha\cos(\alpha) - b\alpha\sin(\alpha) \end{bmatrix}$$
$$= \begin{bmatrix} 0\\h\sin(\alpha) + \alpha\cos(\alpha) & h\cos(\alpha) - \alpha\sin(\alpha) \end{bmatrix} \begin{bmatrix} a\\b \end{bmatrix}$$

Once again we are detecting the invertability of this matrix so we look at it's determinant an note

$$\det \begin{bmatrix} 0 & 1\\ h\sin(\alpha) + \alpha\cos(\alpha) & h\cos(\alpha) - \alpha\sin(\alpha) \end{bmatrix} = -(h\sin(\alpha) + \alpha\cos(\alpha)).$$

So we have non trivial solution exact for $\alpha > 0$ when $h\sin(\alpha x) + \alpha\cos(\alpha) = 0$ or $\frac{-\alpha}{h} = \tan(\alpha)$. Looking at the graph these are indexed by an increasing sequence of number α_n .

Once again the null space is b = 0 so our non-normalized eigen-functions are $X(x) = a \sin(\alpha_n x)$.

To normalize we need a such that

$$1 = (a\sin(\alpha_n x), a\sin(\alpha_n x)) = a^2 \int_0^1 (\sin(\alpha_n x))^2 dx$$

As above

$$a = \frac{1}{\sqrt{\frac{1}{2} + \frac{-1}{4\alpha_n}(\sin(2\alpha_n))}}$$

if $\frac{1}{2} + \frac{-1}{4\alpha_n}(\sin(2\alpha_n)) > 0$, Now looking at the intersection of $\frac{-\alpha}{h}$ and $\tan(\alpha)$ we see that the smallest α is once again $\alpha_1 \ge \frac{\pi}{2}$. So this expression makes sense and finishes the problem. **p. 185.** 4: Here we are dealing with $X'' + \lambda X = 0$ X(0) = 0 X(1) - X'(1) = 0.

Now for $\lambda = 0$ we have that

$$X(x) = ax + b$$

 \mathbf{So}

$$\begin{bmatrix} 0\\0 \end{bmatrix} = \begin{bmatrix} X(0)\\X(1) - X'(1) \end{bmatrix} = \begin{bmatrix} b\\a+b-a \end{bmatrix} = \begin{bmatrix} 0&1\\0&1 \end{bmatrix} \begin{bmatrix} a\\b \end{bmatrix}$$

Now note that for this to have any non-trivial solutions

$$\left[\begin{array}{cc} 0 & 1 \\ 0 & 1 \end{array}\right]$$

would need to have a null space so be non-invertible.

And in fact

$$\det \left[\begin{array}{cc} 0 & 1 \\ 0 & 1 \end{array} \right] = 0$$

Looking at the matrix the null space is where b = 0 and a is arbitrary. So X(x) = aX is a solution. To normalize we need a such that

$$1 = (ax, ax)) = a^2 \int_0^1 x^2 dx = a^2 \frac{1}{3}$$

Or $a = \sqrt{3}$. Similarly for $\lambda > 0$ we can call $\lambda = \alpha^2$ and we have

$$X(x) = a\sin(\alpha x) + b\cos(\alpha x)$$

So

$$\begin{bmatrix} 0\\0 \end{bmatrix} = \begin{bmatrix} X(0)\\X(1) - X'(1) \end{bmatrix} = \begin{bmatrix} b\\a\sin(\alpha) + b\cos(\alpha) - a\alpha\cos(\alpha) + b\alpha\sin(\alpha) \end{bmatrix}$$
$$= \begin{bmatrix} 0\\(\sin(\alpha) - \alpha\cos(\alpha)) & (\cos(\alpha) + \alpha\sin(\alpha)) \end{bmatrix} \begin{bmatrix} a\\b \end{bmatrix}$$

Once again we are detecting the invertability of this matrix so we look at it's determinant an note

$$\det \begin{bmatrix} 0 & 1\\ \sin(\alpha) - \alpha \cos(\alpha) & \cos(\alpha) + \alpha \sin(\alpha) \end{bmatrix} = \sin(\alpha) - \alpha \cos(\alpha).$$

So we have non trivial solution exact for $\alpha > 0$ where $h\sin(\alpha x) + \alpha\cos(\alpha) = 0$ or $\alpha = \tan(\alpha)$. Looking at the graph these are indexed by an increasing sequence of number α_n .

Once again the null-space is b = 0 so our non normalized eigen-functions are X(x) = $a\sin(\alpha_n x)$.

As in problem one to normalize we need to make sense out of

$$a = \frac{1}{\sqrt{\frac{1}{2} - \frac{1}{4\alpha_n}(\sin(2\alpha_n))}}.$$

Equivalently we need $\frac{1}{2} + \frac{-1}{4\alpha_n}(\sin(2\alpha_n)) > 0$. Once again looking at the intersection of α and $\tan(\alpha)$ we see that the smallest α is once again $\alpha_1 \geq \frac{\pi}{2}$ (here since $\tan(x)$ is concave up in $(0, \frac{\pi}{2})$ and α is its tangent line a zero - so the first intersection will not occur in $(0, \frac{\pi}{2})$). So this expression makes sense and gives us the normalized eigen-functions when $\lambda > 0$.

For this problem we must also look into the $\lambda < 0$, since our corollary fails here. The solution here is

$$X(x) = ae^{\alpha x} + be^{-\alpha x}.$$

$$\begin{bmatrix} 0\\0 \end{bmatrix} = \begin{bmatrix} X(0)\\X(1) - X'(1) \end{bmatrix} = \begin{bmatrix} a+b\\(-a\alpha+a)e^{\alpha} + (b+\alpha b)e^{-\alpha} \end{bmatrix}$$
$$= \begin{bmatrix} 1\\(1-\alpha)e^{\alpha} & (1+\alpha)e^{-\alpha} \end{bmatrix} \begin{bmatrix} a\\b \end{bmatrix}$$
$$\det \begin{bmatrix} 1\\(1-\alpha)e^{\alpha} & (1+\alpha)e^{-\alpha} \end{bmatrix} = (1+\alpha)e^{-\alpha} + (-1+\alpha)e^{\alpha}.$$

So there is a non trivial solution when $(1+\alpha)e^{-\alpha} + (-1+\alpha)e^{\alpha} = 0$ or $e^{alpha} - e^{-\alpha} = 0$ $\alpha(e^{\alpha} + e^{-\alpha})$. Divide the last equation by 2 to get $\sinh \alpha = \alpha \cosh \alpha$.

This can't happen. The way to see this is to look at the derivatives of these functions. The derivative of the LHS is $\cosh \alpha$ and the derivative of the RHS is $\cosh \alpha + \alpha \sinh \alpha$. For $\alpha > 0$,

$\cosh \alpha < \cosh \alpha + \alpha \sinh \alpha$

hence the RHS increases faster than the LHS. When $\alpha = 0$, $\sinh \alpha = \cosh \alpha + 1$ $\alpha \sinh \alpha \cosh \alpha$, but this can't happen ever again for $\alpha > 0$ because the RHS will always be larger.

p. 191. 2: Use the general formula

$$1 = \sum_{n=1}^{\infty} \phi_n(x) \int_0^c 1 \cdot \phi_n(x) \, dx$$

with $\phi_n(x) = \sqrt{\frac{2}{c}} \sin \alpha_n x$ and $\alpha_n = \frac{(2n-1)\pi}{2c}$.
$$1 = \sum_{n=1}^{\infty} \sqrt{\frac{2}{c}} \sin \alpha_n x \inf_0^c \sqrt{\frac{2}{c}} \sin \alpha_n x \, dx$$
$$= \sum_{n=1}^{\infty} \frac{2}{c} \sin \alpha_n x \frac{-\cos \alpha_n x}{\alpha_n} \Big|_0^c$$
$$= \sum_{n=1}^{\infty} \frac{2}{c\alpha_n} \sin \alpha_n x \left(\cos 0 - \cos \frac{(2n-1)\pi}{2}\right)$$
$$= \frac{2}{c} \sum_{n=1}^{\infty} \sin \alpha_n x \alpha_n$$

p. 304. 1: a:

$$\int_{-1}^{1} P_n(x) \, dx = \int_{-1}^{1} P_0(x) P_n(x) \, dx = 0$$

for n = 1, 2, 3, ... by orthogonality of P_0 and P_n . b:

$$\int_{-1}^{1} (Ax + B)P_n(x) dx = \int_{-1}^{1} (AP_0(x) + BP_1(x)P_n(x) dx$$
$$= A \int_{-1}^{1} P_1(x)P_n(x) dx + B \int_{-1}^{1} P_0(x)P_n(x) = 0$$

for $n = 2, 3, 4, \ldots$ by orthogonality of P_0 and P_1 to P_n .

p. 304. 2: All you need to do is evaluate six integrals. Here are two of them

$$\int_{-1}^{1} P_0(x) P_2(x) dx = \frac{1}{2} \int_{-1}^{1} 3x^2 - 1 dx = \frac{x^3}{2} - \frac{x}{2} \Big|_{-1}^{1} = 0$$
$$\int_{-1}^{1} P_1(x) P_3(x) dx = \frac{1}{2} \int_{-1}^{1} 5x^4 - 3x^2 dx = \frac{x^5}{2} - \frac{x^3}{2} \Big|_{-1}^{1} = 0$$

Now note that $P_m(x)P_n(x)$ is an odd function whenever one of m and n is odd and the other is even and the integral of an odd function from -1 to 1 is always 0. This takes care of the remaining four.

p. 304. 3: a: Note that $P_{2m}(x)P_{2n}(x)$ is an even function (product of two even functions), hence

$$int_0^1 P_{2m}(x) P_{2n}(x) dx = \frac{1}{2} int_{-1}^1 P_{2m}(x) P_{2n}(x) dx = \begin{cases} 0 & \text{if } m \neq n \\ \frac{1}{4n+1} & \text{if } m = n \end{cases}$$

by (15) on p. 304. Hence $||P_{2n}(x)|| = 1/\sqrt{4n+1}$ with respect to this inner product, and $\sqrt{4n+1}P_{2n}(x)$ is then a unit vector.

- **b:** You can do the same as in (a). Note that the product of two odd functions is even.
- **p. 304.** 4: Just integrate both sides of (10) from a to 1:

$$(2n+1)\int_{a}^{1} P_{n}(x) dx = \int_{a}^{1} P_{n+1}'(x) + P_{n-1}'(x) dx$$
$$\int_{a}^{1} P_{n}(x) dx = \frac{1}{2n+1} (P_{n+1}(1) - P_{n+1}(a) - P_{n-1}(1) + P_{n-1}(a))$$
$$\int_{a}^{1} P_{n}(x) dx = \frac{1}{2n+1} (P_{n-1}(a) - P_{n+1}(a))$$

as $P_{n+1}(1) = P_{n-1}(1) = 1$.

p. 310. 1: Observe that F(x) is the odd extension of the function f(x) = 1 to the interval (-1, 1). (The value at x = 0 is the average of the left limit and the right limit, exactly what we want for Fourier analysis.) We already know from (10) on p. 76 that

$$1 = \sum_{n=0}^{\infty} (P_{2n}(0) - P_{2n+2}(0))P_{2n+1}(x) \qquad (0 < x < 1)$$

Hence

$$F(x) = \sum_{n=0}^{\infty} (P_{2n}(0) - P_{2n+2}(0))P_{2n+1}(x) \qquad (-1 < x < 1)$$

Add $1/2 = 1/2P_0(x)$ to obtain

 \sim

$$g(x) = \frac{1}{2} + \frac{F(x)}{2} = \frac{P_0(x)}{2} + \frac{1}{2} \sum_{n=0}^{\infty} (P_{2n}(0) - P_{2n+2}(0)) P_{2n+1}(x) \qquad (-1 < x < 1)$$

p. 310. 2: This was only recommended, but it's interesting.

a: f(x) is continuous and piecewise smooth (the only point where it is not differentiable is x = 0), hence it f(x) is equal to its Legendre series by the theorem on p. 308.

b: Note that $P_1(x)P_{2n+1}(x)$ is an even function. Hence

$$A_{2n+1} = \frac{2(2n+1)+1}{2} \int_{-1}^{1} f(x) P_{2n+1}(x) dx$$

= $\frac{4n+3}{2} \int_{0}^{1} x P_{2n+1}(x) dx = \frac{4n+3}{2} \int_{0}^{1} P_{1}(x) P_{2n+1}(x) dx$
= $\frac{4n+3}{4} \int_{-1}^{1} P_{1}(x) P_{2n+1}(x) dx = \begin{cases} \frac{1}{2} & \text{if } n = 0\\ 0 & \text{if } n \neq 0 \end{cases}$

c: Just do the integration

$$A_n = \frac{2n+1}{2} \int_{-1}^{1} f(x) P_n(x) \, dx = \frac{2n+1}{2} \int_{0}^{1} x P_n(x) \, dx$$

for n = 0, 2, 4.