
Math 143 Exam 2 Solutions

Oct 31, 2014

1. (10 pts) To investigate the relationship between the integrand and the errors in the midpoint
and trapezoid rules, imagine an integrand whose graph is concave down over one subinter-
val of integration. Sketch graphs where f ′′ has small magnitude and where f ′′ has large
magnitude. How do the errors compare?

Both the midpoint and trapezoid rules use straight lines to approximate the function.
Hence the error in both approximations is due to the function’s curvature away from the
straight line. The larger the magnitude of f ′′, the faster the slope of f is changing, i.e. the
more the graph of f is curved. This is true whether f is concave up or down. Therefore
when f ′′ has large magnitude, both the midpoint and the trapezoid rules will make a bigger
error in approximating the area under the graph. You can see this on the diagrams below.

small f’’, trapezoid rule large f’’, trapezoid rule small f’’, midpoint rule large f’’, midpoint rule

Note: This is all I expected you to say. It is in fact possible to show that the for a function
that is concave down (or up) throughout a subinterval, the midpoint rule gives a better
approximation than the trapezoid rule. But the argument is somewhat subtle, although you
already know all the math you need to give such argument.

For a function f whose concavity is not uniform, you cannot say which of the two rules
has smaller error, without knowing what f is. For many functions you would encounter as an
example, the error of the trapezoid rule is about twice the error of the midpoint rule. This is
because the typical function you think of is quite well approximated by a quadratic function
on a short interval. But it is not hard to come up with a function for which the trapezoid

rule gives a better approximation than the midpoint rule. E.g. for
∫ 3π/2
−3π/2 cos(x)dx = −2,

TRAP (1) = 0 and MID(1) = 3π.

2. (10 pts) Decide if the following statement is true or false and justify your answer. If f(x) is
a positive periodic function, then

∫ ∞
0 f(x)dx diverges.

This is certainly true. Let P be the period of f . Let A =
∫ P
0 f(x)dx. Since f(x) > 0,

A > 0. Now, the area under f from 0 to ∞ includes the area A again and again as f keeps
going through its period again and again. Therefore

∫ ∞
0 f(x)dx is infinitely large.

3. (10 pts) Is the improper integral
∫ π/2

−π/2
tan2(x)dx

convergent or divergent? If it is convergent, find its value.



This is a doubly improper integral, so we need to split it at some point between −π/2 and
π/2. I’ll choose 0 for this point.

∫ π

2

−π

2

tan2(x)dx =

∫ 0

−π

2

tan2(x)dx +

∫ π

2

0
tan2(x)dx

= lim
a→−π

2

+

∫ 0

a
tan2(x)dx + lim

a→π

2

−

∫ a

0
tan2(x)dx

I will evaluate these one at a time.

lim
a→π

2

−

∫ a

0
tan2(x)dx = lim

a→π

2

−

∫ a

0
sec2(x) − 1dx
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2
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(tan(x) − x) |a0
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2

−

tan(a) − a

As a → π/2−, tan(a) → ∞. Therefore this limit diverges to ∞. That is enough to make
∫ π/2
−π/2 tan2(x)dx divergent. I do not even need to evaluate the other improper integral.

4. (10 pts) Use horizontal slices (strips) and a Riemann sum to find the area of an ellipse
whose horizontal radius is a and vertical radius is b. (Hint: use either the equation of the
ellipse x2/a2 + y2/b2 = 1 or think of the ellipse as a circle that is stretched in the horizontal
direction.)

I will compute the area of the upper half of the ellipse
by dividing it up into horizontal slices. The width of
the slice at yi is 2xi. From the equation of the ellipse,
xi = a

√

1 − y2/b2. Each slice is approximately a rec-
tangle, so its area is approximately 2xi∆y. Summing
these and taking the limit as n → ∞ gives me the
exact area of the upper half of the ellipse:

ixyi

Dy

A = lim
n→∞

n∑

i=1

2a

√

1 − y2

b2
∆y.

This is a Riemann sum, which is equal to the integral
∫ b

0
2a

√

1 − y2

b2
dy =

2a

b

∫ b

0

√

b2 − y2dy substitute y = b sin(u)

=
2a

b

∫ y=b

y=0

√

b2 − b2 sin( u)b cos(u)du since dy = b cos(u)du

= 2a

∫ y=b

y=0

√

b2 cos2(u) cos(u)du

= 2a

∫ y=b

y=0
b cos2(u)du

= 2ab

∫ y=b

y=0
cos2(u)du



Now,
∫

cos2(u)du =

∫

cos(u)
︸ ︷︷ ︸

f ′

cos(u)
︸ ︷︷ ︸

g

du

= sin(u)
︸ ︷︷ ︸

f

cos(u)
︸ ︷︷ ︸

g

−
∫

sin(u)
︸ ︷︷ ︸

f

(− sin(u))
︸ ︷︷ ︸

g′

du

= sin(u) cos(u) +

∫

sin2(u)
︸ ︷︷ ︸

1−cos2(u)

du

= sin(u) cos(u) +

∫

1du −
∫

cos2(u)du

= sin(u) cos(u) + u −
∫

cos2(u)du.

Hence ∫

cos2(u)du =
1

2
(sin(u) cos(u) + u) + c.

Now, back to the definite integral above
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cos2(u)du = 2ab
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2

∣
∣
∣
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y
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as cos(u) =

√

1 − sin2(u) =
√

1 − y2/b2

= ab
π

2
This was the area of the upper half of the ellipse, so the area of the entire ellipse is πab.

5. (10 pts) Extra credit problem. Let n ≥ 2 be an integer. Is the improper integral
∫ ∞

0

1

e−
n
√

x
dx

convergent or divergent? Justify your answer.

This extra credit problem was a real give-away because I made a typo in the function and
did not catch it. Notice that

1

e−
n
√

x
= e

n
√

x.

Notice that as x → ∞, n

√
x → ∞, although perhaps quite slowly. So e

n
√

x → ∞. Therefore
the area under the function cannot be finite. For that matter, when x ≥ 0, n

√
x ≥ 0, and so

e
n
√

x ≥ 1. Hence ∫ ∞

0
e

n
√

xdx >

∫ ∞

0
1dx.

The integral on the right diverges to ∞, hence the integral on the left must also diverge to
∞.


