Math 2111 Written Assignment 1 due 9/12/05

- 1. Let $f(x) = x^3 3x^2 + 5x 3$
 - (a) Find all roots of f(x) over the complex numbers. (Hint: there is an obvious root. If you can't guess it, graph the polynomial.)
 - (b) How many roots does f(x) have? How many of them are real?
 - (c) Do you notice anything special about the two complex roots?
- 2. (a) Let f(x) be a polynomial with real coefficients. Suppose that $\alpha \in \mathbb{C}$ is such that $f(\alpha) = 0$. Prove that $f(\overline{\alpha}) = 0$. (Hint: Show first that if α and β are arbitrary complex numbers, $\overline{\alpha + \beta} = \overline{\alpha} + \overline{\beta}$ and $\overline{\alpha\beta} = \overline{\alpha}\overline{\beta}$. Now use these to argue $f(\overline{\alpha}) = \overline{f(\alpha)}$.)
 - (b) Use the previous result to show that the complex roots of a real polynomial come in pairs of conjugates.
 - (c) Let f(x) be a real polynomial of odd degree. Prove that f(x) has a real root.
- 3. In this exercise, you will give a slick (much more elegant than in class) proof of the sine and cosine addition formulas. Let $a = e^{\alpha i}$ and $b = e^{\beta i}$.
 - (a) Find *ab* and write it in Cartesian coordinates.
 - (b) Write a and b in Cartesian coordinates and then multiply them.
 - (c) Compare the previous two results and derive the formulas for $\sin(\alpha + \beta)$ and $\cos(\alpha + \beta)$.
- 4. Let p be a prime. It can be proven that in \mathbb{Z}_p , there is always an element \overline{k} such that every nonzero element is equal to some power of \overline{k} . Luckily, you don't have to prove this now. Find an example of such a \overline{k} in each of the sets below and show how every nonzero element arises as a power of \overline{k} .
 - (a) \mathbb{Z}_5
 - (b) **Z**₇
 - (c) \mathbb{Z}_{11}
- 5. Let $f(x) = x^2 + x 2$.
 - (a) Find all the roots of f(x) in \mathbb{Z}_5 . How many are there?
 - (b) Find all the roots of f(x) in \mathbb{Z}_{10} . How many are there?
 - (c) Explain why you can get so many roots for a quadratic polynomial in \mathbb{Z}_{10} .