Math 2111 Quiz Problems 2

Prepare by 11/2/05

- $1. \ 3.4.27$
- $2. \ 3.4.28$
- $3. \ 3.5.35$
- 4. Let V be a vector space and $U, W \subseteq V$ subspaces. Prove or disprove the following.
 - (a) $U \cap W$ is a subspace of V.
 - (b) $U \cup W$ is a subspace of V.
 - (c) $U \setminus W$ is a subspace of V.
 - (d) $U + W = \{u + w | u \in U, w \in W\}$ is a subspace of V.
- 5. Let V be a vector space and $S, T \subseteq V$. Prove or disprove the following.
 - (a) $\operatorname{span}(S) \cap \operatorname{span}(T) = \operatorname{span}(S \cap T)$
 - (b) $\operatorname{span}(S) \cup \operatorname{span}(T) = \operatorname{span}(S \cup T)$
 - (c) If $S \subseteq T$, then $\operatorname{span}(S) \subseteq \operatorname{span}(T)$.
 - (d) If $T \subseteq \operatorname{span}(S)$, then $\operatorname{span}(T) \subseteq \operatorname{span}(S)$.
 - (e) $\operatorname{span}(\operatorname{span}(S)) = \operatorname{span}(S)$. (Hint: Use the previous statement.)
 - (f) $\operatorname{span}(S \cup T) = \operatorname{span}(S) + \operatorname{span}(T)$. (See the previous exercise on what it means to add two subspaces.)
- 6. Let V be a vector space and $S, T \subseteq V$. Prove or disprove the following.
 - (a) If $S \subseteq T$ and T is linearly independent then S is linearly independent.
 - (b) If $S \subseteq T$ and T is linearly dependent then S is linearly dependent.
 - (c) If $S \subseteq T$ and S is linearly independent then T is linearly independent.
 - (d) If $S \subseteq T$ and S is linearly dependent then T is linearly dependent.
 - (e) If S and T are linearly independent then $S \cap T$ is linearly independent.
 - (f) If S and T are linearly dependent then $S \cap T$ is linearly dependent.
 - (g) If S and T are linearly independent then $S \cup T$ is linearly independent.
 - (h) If S and T are linearly dependent then $S \cup T$ is linearly dependent.
- 7. Let V be a vector space and $U \subseteq W$ subspaces of V. Prove or disprove the following. (a) If S is a basis of U and T is a basis of W then $S \subseteq T$.
 - (b) Given a basis S of U there always exists a basis \overline{T} of V such that $S \subseteq T$.
 - (c) Given a basis T of W there always exists a basis S of U such that $S \subseteq T$.
- 8. Let V be a vector space and U, W subspaces of V. Let S be a basis of U and T be a basis of W. Prove or disprove the following.
 - (a) $S \cap T$ is a basis of some subspace of V.
 - (b) $S \cap T$ is a basis of $U \cap W$.
 - (c) $S \cup T$ is a basis of some subspace of V.
 - (d) $S \cup T$ is a basis of U + W.