
Math 244 Exam 1 Solutions

Sep 29, 2014

1. (10 pts) Explain what is wrong with the following statement: a function f(x, y) with linear
cross-sections for x fixed and linear cross-sections for y fixed is a linear function.

The problem is that such a function need not be linear. For a counterexample, consider
f(x, y) = xy. If we fix x = k, we get z = ky, which is the equation of a line in the yz-plane or
in the plane x = k, which is parallel to the yz-plane. Similarly, fixing y = m gives z = mx,
which is the equation of a line in the plane y = m. Hence all of the cross-sections of f(x, y)
with x or y fixed are linear, but f(x, y) = xy is not a linear function.

Note: The statement does not say anything about fixing both x and y at the same time.
Also, it is not true that f(x, y) cannot be a linear function. For sure, if f(x, y) is a linear
function, its graph is a plane and its cross-sections with x or y fixed are lines, if they exist.

2. (10 pts) Show that if ~u and ~v are two vectors such that ~u · ~w = ~v · ~w for every vector ~w, then
~u = ~v. (Hint: no, you can’t just divide both sides by ~w.)

First, let me try to lay a few misconceptions to rest:
Canceling ~w: If u, v, w are numbers and w 6= 0, then if uw = vw, you can cancel w–i.e.

divide both sides by w–to get u = v. It is tempting to do this with ~u · ~w = ~v · ~w.
But it does not work because there is no such thing as division by a vector. In fact,
it is easy to find an example of three nonzero vectors that satisfy ~u · ~w = ~v · ~w. E.g.
(1, 1) · (1, 0) = (1,−1) · (1, 0).

If two sums are equal, then they must have corresponding equal terms: If u =
(u1, . . . , un), v = (v1, . . . , vn), and w = (w1, . . . , wn), then

~u · ~w = ~v · ~w

u1w1 + u2w2 + . . . unwn = v1w1 + v2w2 + . . . vnwn.

It is tempting to say that this implies

u1w1 = v1w1

u2w2 = v2w2

...

unwn = vnwn

but that is false. If you want a counterexample, try 1 + 2 + 3 = 4 + 1 + 1. BTW, even
if you know uiwi = viwi, you can cancel wi only if wi 6= 0.

If two products are equal, then they must have corresponding equal factors: This
is a variant on the previous theme. Let φ be the angle between ~u and ~w and let θ be
the angle between ~v and ~w. Then

~u · ~w = ~v · ~w =⇒ |~u||~w| cos(φ) = |~v||~w| cos(θ) =⇒ |~u| cos(φ) = |~v| cos(θ)

But this does not show that |~u| = |~v| and cos(φ) = cos(θ). Counterexample: 2 ·6 = 3 ·4.
BTW, even if you know that φ = θ, that would not tell you ~u and ~v point in the same
direction. Counterexample: the angle between ~u = (1, 0) and ~w = (1, 1) and the angle
between ~v = (0, 1) and ~w are both 45◦.

Assuming that the angles between ~u and ~w and between ~v and ~w are the same:

If you write ~u · ~w = |~u||~w| cos(φ) and ~v · ~w = |~v||~w| cos(φ), then you are assuming that



theangles between ~u and ~w and between ~v and ~w are the same. But a priori there is no
reason to believe that.

So, I will give you two correct arguments why ~u · ~w = ~v · ~w for every vector ~w implies
~u = ~v. First, let ~u = (x1, . . . , xn) and ~v = (y1, . . . , yn). Let ~wi be the vector all of whose
coordinates are 0 except for the i-th coordinate, which is 1. Since ~u · ~w = ~v · ~w for every ~w,
in particular, ~u · ~wi = ~v · ~wi for i = 1, . . . , n. But ~u · ~wi = xi and ~v · ~wi = yi, so xi = yi for
i = 1, . . . , n. Now we can conclude ~u = ~v.

Here is the other argument:

~u · ~w = ~v · ~w =⇒ ~u · ~w − ~v · ~w = 0 =⇒ (~u − ~v) · ~w = 0.

This is true for every vector ~w, so it must be true for ~w = ~u − ~v. Hence

0 = (~u − ~v) · (~u − ~v) = |~u − ~v|2 =⇒ |~u − ~v| = 0 =⇒ ~u − ~v = 0 =⇒ ~u = ~v.

3. (10 pts) Let

f(x, y) =

{
2x2−y2

xy
if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0).

Is f continuous at (x, y) = (0, 0). (Hint: consider lim(x,y)→(0,0) f(x, y) along lines y = mx
for different values m.)

This is just like the example we did in class with a slightly different function. Or compare it
with 12.6.16 on your offline homework or problems 10-12 in Chapter12Section4-6 in Webwork.

We will let (x, y) → (0, 0) along the lines y = mx. Then

lim
(x,mx)→(0,0)

f(x, mx) = lim
(x,mx)→(0,0)

2x2 − (mx)2

x(mx)

= lim
(x,mx)→(0,0)

(2 − m)x2

mx2

= lim
(x,mx)→(0,0)

2 − m

m

=
2 − m

m

where we could cancel x2 because x 6= 0 as x → 0. Notice that (2 − m)/m has different
values for different values of m. Hence f(x, y) approaches different numbers as (x, y) → (0, 0)
depending on the path that is followed. Therefore lim(x,y)→(0,0) f(x, y) does not exist. Hence
f(x, y) is not continuous at (0, 0).

4. (10 pts) One sunny afternoon, you decide to go for a flight on Pete, your pet pterodactyl.
Your destination is 120 miles to the northeast (45◦ east of north). It is well know that a
pterodactyl’s cruising airspeed is 60 miles/hour. The wind is blowing from the west at 15
miles/hour. What heading on the compass should you fly to arrive at your destination?
How long will he take to get there?

You can do this exactly like the airplane example in class, or whatever way you used to
do 13.2.18 on the offline homework or problem 19 in Chapter 13 in Webwork.

I will use parallel and perpendicular components to solve this problem.
Pete’s intended direction of travel is to the northeast, i.e. in the direction of the vector

(1, 1). So let ~u = (1/
√

2, 1/
√

2) be the unit vector pointing in that direction. Let ~w = (15, 0)
be the velocity of the wind, let ~a be Pete’s velocity relative to air, and let g be Pete’s velocity
relative to the ground.



To make the diagram to the right less crowded, I did
not label all of these vectors. Here is what they are:

~a = ~OA ~w = ~AB

~a|| = ~CA ~w|| = ~CB

~a⊥ = ~CA ~w⊥ = ~AC

~g = ~OB

Note that ~u is not shown in the diagram, but it’s just
a unit vector in the same direction as ~g.

y
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C

Here is what we know

~g = ~a + ~w

|~a| = 60 mph

~g = |~g|~u b/c ~g should point to the northeast

We will decompose ~w = ~w⊥+ ~w|| and ~a = ~a⊥+~a||, where ~w⊥, ~w||, ~a⊥, and ~a|| are components
perpendicular and parallel to ~u respectively. First

~w|| = (~w · ~u)~u = (15, 0) ·
(

1√
2
,

1√
2

)(
1√
2
,

1√
2

)

=

(
15

2
,
15

2

)

~w⊥ = ~w − ~w|| =

(
15

2
,−15

2

)

Notice that ~w⊥ wants to push you off course, so you need to compensate for it by letting
~a⊥ = ~w⊥, hence ~a⊥ = (−15/2, 15/2). So the wind correction angle φ satisfies

sin(φ) =
|~a⊥|
~a

=

√
(

15
2

)2
+

(
15
2

)2

60
=

1

4
√

2
=⇒ φ ≈ 10.18◦

Hence Pete should be steered 10.18◦ toward the north, or to a heading of 45◦−10.18◦ = 34.82◦

on the compass.
To compute Pete’s ground speed, note that

|~a|||2 = |~a|2 − |~a⊥|2 =⇒ |~a||| =

√

602 − 152

2
≈ 59.06 mph.

Pete is also helped by ~w||, so his ground speed will be 59.06 + 15/
√

2 ≈ 69.66 mph. So Pete
will take 120/69.66 ≈ 1.72 h to get to the destination.

Some of you did this problem using only high school geometry and the Law of Sines. It’s
a clever solution and actually a little simpler than the one above with vectors, so I would
like to share it with the rest of you.

Consider the diagram below.
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The triangle formed by the wind and Pete’s velocities relative to the air and the ground
has two sides that are known: |~w| = 15 and |~a| = 60 and one known angle of 45◦ opposite ~a.
If φ is the angle opposite ~w, we can use the Law of Sines to write

sin(φ)

15
=

sin(45◦)

60
=⇒ sinφ =

15

60
sin(45◦) =

1

4
√

2
=⇒ φ ≈ 10.18◦.

Hence Pete should follow a heading of 45◦ − 10.18◦ = 34.82◦ on the compass. To find Pete’s
ground speed, we note that the angle opposite ~g is θ ≈ 180◦ − 45◦ − 10.18◦ = 124.82◦. We
use the Law of Sines again to find

|~g|
sin(θ)

=
60

sin(45◦)
=⇒ |~g| ≈ 60

√
2 sin(124.82◦) ≈ 69.66.

Which once again tells us that Pete’s flying at a ground speed of 69.66mph and he should
reach his destination in 120/69.66 ≈ 1.72 h.

5. (10 pts) Extra credit problem. Let A, B, and C be the vertices of a triangle. Let ~a be the

vector from A to the midpoint of the side BC, ~b the vector from B to the midpoint of the
side AC, and ~c the vector from C to the midpoint of the side AB. Prove that there exists

a triangle whose sides are ~a, ~b, and ~c. (Hint: if I just gave you three random vectors, you
probably couldn’t make a triangle out of them. So first think about what the three vectors
need to do to form the sides of a triangle.)

Α Β

a

c

b

C

First notice that in any triangle ABC, ~AB+ ~BC+ ~CA = ~0. In fact, if three nonzero vectors
add up to ~0 and they are parallel, then they form a triangle. But that is only one possible

scenario. We could have
−−→
BA instead of ~AB, in which case we have −−−→

BA +
−−→
CB +

−→
CA = ~0.

Similarly, the other two vectors could point in the opposite direction. This gives us eight



possible equations, although they sort into four equivalent pairs. If ~u, ~v, and ~w are three
nonzero nonparallel vectors, then they form a triangle if and only if

~u + ~v + ~w = ~0 ⇐⇒ −~u − ~v − ~w = ~0

−~u + ~v + ~w = ~0 ⇐⇒ ~u − ~v − ~w = ~0

~u − ~v + ~w = ~0 ⇐⇒ −~u + ~v − ~w = ~0

~u + ~v − ~w = ~0 ⇐⇒ −~u − ~v + ~w = ~0

These four equations correspond to the four diagrams below:

w v

u u

w vw v

u
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Now, in this problem, we have ~a = ( ~AB + ~AC)/2, ~b = ( ~BA + ~BC)/2, ~c = ( ~CA + ~CB)/2.
It is clear from the picture that they are nonzero and cannot be parallel. Notice

~a +~b + ~c =
~AB + ~AC

2
+

−−→
BA +

−−→
BC

2
+

−→
CA +

−−→
CB

2

=

−−→
AB

2
+

−−→
BA

2
︸ ︷︷ ︸

~0

+

−→
AC

2
+

−→
CA

2
︸ ︷︷ ︸

~0

+

−−→
BC

2
+

−−→
CB

2
︸ ︷︷ ︸

~0

= ~0

Hence ~a, ~b, and ~c form a triangle.


