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Dec 12, 2014

1. (10 pts) Show that the function f does not have a limit at (0, 0) by examining the limits of
f as (x, y) → (0, 0) along the curve y = kx2 for different values of k:

f(x, y) =
x2

x2 + y
, x2 + y 6= 0.

Consider the limit as (x, y) → (0, 0) along the curve y = mkx2:

lim
(x,y)→(0,0)

y=kx2

x2

x2 + y
= lim

x→0

x2

x2 + kx2
= lim

x→0

x2

x2(1 + k)
= lim

x→0

1

1 + k
=

1

1 + k

where we could cancel x2 because x 6= 0 as x → 0. So the value of f approaches different
numbers as (x, y) → (0, 0) along different paths. Hence lim(x,y)→(0,0) f(x, y) does not exist.

2. Consider the function f(x, y) =
√

|xy|.
(a) (5 pts) Show that fx(0, 0) and fy(0, 0) exist.

Because of the absolute value, we need to use the definition of the derivative.

fx(0, 0) = lim
h→0

f(h, 0) − f(0, 0)

h
= lim

h→0

0 − 0

h
= 0

Similarly,

fy(0, 0) = lim
h→0

f(0, h) − f(0, 0)

h
= lim

h→0

0 − 0

h
= 0

(b) (10 pts) Is f differentiable at (0, 0)? (Hint: Consider the directional derivative f~u(0, 0)

for ~u = (~i +~j)/
√

2. How does it compare with the definition of differentiability?)

Let ~u = (~i +~j)/
√

2. We will compute f~u(0, 0):

f~u(0, 0) = lim
h→0

f
(

h√
2
, h√

2

)

− f(0, 0)

h

= lim
h→0

√

h2

4 − 0

h
since

∣

∣

∣

∣

h2

4

∣

∣

∣

∣

=
h2

4

= lim
h→0

|h|
2 − 0

h

= lim
h→0

|h|
2h

This limit does not exist because the left and the right hand limits are −1/2 and 1/2.
This already suggests that f is not differentiable at (0, 0) because if it were, its directional

derivative there would be ~∇f · ~u = ~0 · ~u = 0. However, we can see directly that f fails
to satisfy the definition of differentiability at (0, 0).
If f is differentiable at (0, 0), then it must have a good linear approximation given
by the partial derivatives L(x, y) = 0(x − 0) + 0(y − 0) + 0 = 0 in the sense that



E(x, y) = f(x, y) − L(x, y) =
√

|xy| must satisfy

0 = lim
h→0
k→0

E(h, k)√
h2 + k2

= lim
h→0
k→0

√

|hk|√
h2 + k2

In particular, when k = h as h → 0, we get

lim
h→0

√

|h2|√
h2 + h2

= lim
h→0

√
h2

√
2
√

h2
= lim

h→0

√
h2

√
2
√

h2
=

1√
2
6= 0.

This tells us that

lim
h→0
k→0

E(h, k)√
h2 + k2

cannot possibly be 0. Hence f is not differentiable at (0, 0).

3. For constants a and b with ab 6= 0 and ab 6= 1, let f(x, y) = ax2 + by2 − 2xy − 4x − 6y.
(a) (8 pts) Find the x- and y-coordinates of the critical point. Your answer will be in terms

of a and b.

To find the critical point(s), we look for where the gradient is 0 or undefined. In this
case

~∇f = (2ax − 2y − 4, 2by − 2x − 6),

which is defined for any x, y, and is 0 when

2ax − 2y − 4 = 0

2by − 2x − 6 = 0

The first equation implies y = ax − 2. Substitute this into the second equation to get

0 = 2b(ax − 2) − 2x − 6 = 2abx − 4b − 2x − 6 = (2ab − 2)x − 4b − 6 =⇒

x =
2b + 3

ab − 1
=⇒ y = a

2b + 3

ab − 1
− 2 =

2ab + 3a − 2(ab − 1)

ab − 1
− 2 =

3a + 2

ab − 1
.

So the critical point is at
(

2b+3
ab−1 , 3a+2

ab−1

)

.

(b) (7 pts) Classify the critical point for all values of a and b with ab 6= 0 and ab 6= 1.

To classify the critical point, we will use the second derivative test and look at

D =
∂2f

∂x2

∂2f

∂y2
−
(

∂2f

∂x∂y

)2

= (2a)(2b) − (−2)2 = 4ab − 4.

D < 0: If 4ab − 4 < 0, that is ab < 1, then the critical point is a saddle point.

D = 0: This never happens as ab 6= 1.

D > 0: If 4ab− 4 > 0, that is ab > 1, then the critical point is a local extremum. It

is a local maximum if 0 > ∂2f
∂x2 = 2a, that is when a < 0. It is a local minimum

if 0 < ∂2f
∂x2 = 2a, that is when a > 0. Note that a = 0 never happens, otherwise

ab = 0.



4. (10 pts) Let ~u, ~v, and ~w be vectors in R3. One of your homework problems was to show that
if ~u · ~w = ~v · ~w for every vector ~w, then ~u = ~v. Is it true that if ~u × ~w = ~v × ~w for every
vector ~w ∈ R3 then ~u = ~v? If so, prove it; if not, give a counterexample.

Yes, this is true. Notice that

~u × ~w = ~v × ~w =⇒ ~0 = ~u × ~w − ~v × ~w = (~u − ~v) × ~w.

Let ~a = ~u − ~v. We will show that if ~a × ~w = ~0 for all ~w, then ~a must be ~0. Suppose this
is not true and ~a 6= ~0. Choose any nonzero vector that is not parallel to ~a. You can always

find such a vector in R3. For example, you can take one of ~i, ~j or ~k, as ~a cannot be parallel
to all three. Now, since ~a × ~w = ~0 for any ~w, it must be that

0 = |~a × ~w| = |~a||~w| sin(φ)

where φ is the angle between ~a and ~w. Since ~a ∦ ~w, φ 6= 0, π and hence sin(φ) 6= 0. But
|~a| 6= 0 and |~w| 6= 0, so the right hand side above cannot be 0. So we have reached a

contradiction. Therefore the assumption that ~a 6= ~0 must have been false.

5. Santa Claus needs to buy presents for 7500 good girls and boys. He wants to give Pete,
the flying pterodactylTM action figures to some of the children and handheld Mathdoku
video games to the others. It costs Santa 10000 + 100

√
x dollars to buy x Petes and

20000 + 5000 ln(y) dollars to buy y Mathdoku games from fair trade suppliers.

(a) (10 pts) Santa is a generous guy, so he actually wants to maximize his cost to benefit
his suppliers. How many Petes and how many Mathdokus should he order?

Suppose Santa buys x Petes and y Mathdoku games. Then his total cost is

f(x, y) = 10000 + 100
√

x + 20000 + 5000 ln(y) = 30000 + 100
√

x + 5000 ln(y).

The constraint is g(x, y) = x + y = 7500. By the method of Langrange multipliers, the

critical points are where ~∇f = λ~∇g for some scalar λ. So

~∇f =

(

1

2
100x−1/2, 5000

1

|y|

)

= λ(1, 1).

Since only nonnegative values of y make sense, |y| = y. Thus we have the system of
equations

50√
x

= λ

5000

y
= λ

x + y = 7500

Note y 6= 0 otherwise 5000/y cannot be equal to λ. So the second equation gives
y = 5000/λ. Similarly, x 6= 0, so

√
x = 50/λ and then x = 2500/λ2. Substituting these



into the third equation yields

2500

λ2
+

5000

λ
= 7500

2500 + 5000λ = 7500λ2

7500λ2 − 5000λ − 2500 = 0

3λ2 − 2λ − 1 = 0

(3λ + 1)(λ − 1) = 0

λ = −1

3
or 1

If λ = −1/3, then y < 0, which does not make sense in the context of this problem. So
λ = 1, and hence x = 2500 and y = 5000.
The maximum could occur at the critical point (2500, 5000) or at the endpoints (7500, 0)
and (0, 7500). But notice that f does not have a value at (7500, 0), so the endpoint there
is really (7499, 1). The values of f at these points are

f(2500, 5000) = 30000 + 100
√

2500 + 5000 ln(5000) ≈ 77586

f(7499, 1) = 30000 + 100
√

7499 + 5000 ln(1) ≈ 38660

f(0, 7500) = 30000 + 100
√

0 + 5000 ln(7500) ≈ 74613

So the cost appears to be maximized if Santa buys 2500 Petes and 5000 Mathdoku
games.

(b) (3 pts) How do you know that what you found in part(a) is a global maximum?

The constraint x+ y = 7500 with the two endpoints (0, 7500) and (7499, 1) (since y = 0
is not an option) is a line segment. That is a closed and bounded set. The function f
is continuous on this set. So we know f must have a global maximum ont this set, and
the global maximum must be at a local maximum or at one of the endpoints. We have
checked all three such points. The one with the highest value of f must be the global
maximum.

(c) (2 pts) Estimate how much more it would cost to give out 7501 presents while maximizing
Santa’s cost.

As we showed in class, the increase in maximum cost is approximately λ, which is 1. So
the cost would increase by about $1.

6. An object shaped like an “ice cream cone” is bounded by the cone z =
√

3x2 + 3y2 and the
sphere x2 + y2 + z2 = 9. The density of its material increases with distance from the origin

and is given by the function f(x, y, z) = 3 +
√

x2 + y2 + z2 where x, y, and z are measured
in cm, and f is in g/cm3.
(a) (10 pts) Choose appropriate coordinates and find the mass of this object.

It is easiest to describe this region in terms of spherical coordinates: 0 ≤ ρ ≤ 3,
0 ≤ φ ≤ π/6, 0 ≤ θ ≤ 2π. In terms of these, f(ρ, φ, θ) = 3 + ρ. The mass is the integral



of the density:
∫

R
f(ρ, φ, θ) dV =

∫ 2π

0

∫ π/6

0

∫ 3

0
(3 + ρ)ρ2 sin(φ) dρ dφ dθ

=

∫ 2π

0

∫ π/6

0
sin(φ)

(

ρ3 +
ρ4

4

)∣

∣

∣

∣

3

0

dφ dθ

=

∫ 2π

0

∫ π/6

0
sin(φ)

(

27 +
81

4

)

dφ dθ

=
189

4

∫ 2π

0
− cos(φ)|π/6

0 dθ

=
189

4

∫ 2π

0
1 −

√
3

2
dθ

=
189

4

(

1 −
√

3

2

)

∫ 2π

0
dθ

=
189

4

(

1 −
√

3

2

)

2π

=
189(2 −

√
3)π

4
≈ 39.77

So the mass of the object is about 39.77 g.

(b) (5 pts) Choose a coordinate system different from the one you used in part (a) and set
up an integral for the mass of the object. You do not need to evaluate the integral.

To describe the region in cylindrical coordinates, note that the conical side is given by

z =
√

3x2 + 3y2 =
√

3r2 =
√

3r and the spherical cap is given by 9 = x2 + y2 + z2 =
r2 + z2. These intersect where

r2 + (
√

3r)2 = 9 =⇒ 4r2 = 9 =⇒ r2 =
9

4
=⇒ r =

3

2
.

Hence the integral in cylindrical coordinates is

∫ 2π

0

∫ 3

2

0

∫

√
9−r2

√
3r

(3 +
√

r2 + z2)r dz dr dθ

In Cartesian coordinates, the region is described by −3
2 ≤ x ≤ 3

2 , −
√

9
4 − x2 ≤ y ≤

√

9
4 − x2, and

√

3x2 + 3y2 ≤ z ≤
√

9 − x2 − y2. Hence the integral is

∫ 3

2

− 3

2

∫

q

9

4
−x2

−
q

9

4
−x2

∫

√
9−x2−y2

√
3x2+3y2

3 +
√

x2 + y2 + z2 dz dy dx.

7. Extra credit problem. Let f(x, y) be a function. Suppose that all of the second partial
derivatives of f exist.
(a) (3 pts) Under what conditions would fxy(a, b) = fyx(a, b) have to be true?

Schwarz’s theorem says that if (a, b) is an interior point of the domain of f and fxy and
fyx are both continuous at (a, b) then they must be equal there.



(b) (12 pts) Find a function f whose mixed second partial derivatives are not equal at some
point (a, b) and show that fxy(a, b) 6= fyx(a, b). (Hint: such a function may not be
defined by a single formula everywhere.)

Let

f(x, y) =

{

xy(x2−y2)
x2+y2 if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0).

See the solution to problem 5 on the second midterm exam for the proof that fxy 6= fyx.


