
2 6 22 56 114

114 � 56 � 5856 � 22 � 3422 � 6 � 166 � 2 � 4

10 CHAPTER 1 The Art of Problem Solving

An Application of Inductive Reasoning: 
Number Patterns
In the previous section we introduced inductive reasoning, and we showed how it
can be applied in predicting “what comes next” in a list of numbers or equations. In
this section we will continue our investigation of number patterns.

An ordered list of numbers, such as

is called a sequence. A number sequence is a list of numbers having a first number,
a second number, a third number, and so on, called the terms of the sequence. To in-
dicate that the terms of a sequence continue past the last term written, we use three
dots (ellipsis points). The sequences in Examples 2(a) and 2(c) in the previous sec-
tion are called arithmetic and geometric sequences, respectively. An arithmetic se-
quence has a common difference between successive terms, while a geometric
sequence has a common ratio between successive terms. The Fibonacci sequence in
Example 2(b) is covered in a later chapter.

Successive Differences The sequences seen in the previous section were
usually simple enough for us to make an obvious conjecture about the next term.
However, some sequences may provide more difficulty in making such a conjecture,
and often the method of successive differences may be applied to determine the
next term if it is not obvious at first glance. For example, consider the sequence

Since the next term is not obvious, subtract the first term from the second term, the
second from the third, the third from the fourth, and so on.

2, 6, 22, 56, 114, . . . .

3, 9, 15, 21, 27, . . . ,

1.2

2 6 22 56 114 (1)

4 16 34 58 (2)

12 18 24 (3)

6 6 (4)

61. Explain how a toddler might use inductive reasoning
to decide on something that will be of benefit to him
or her.

62. Discuss one example of inductive reasoning that you
have used recently in your life. Test your premises
and your conjecture. Did your conclusion ultimately
prove to be true or false?

Now repeat the process with the sequence 4, 16, 34, 58 and continue repeating until
the difference is a constant value, as shown in line (4):
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2 6 22 56 114 202 (1)

4 16 34 58 88 (2)

12 18 24 30 (3)

6 6 6 (4)

Once a line of constant values is obtained, simply work “backward” by adding until
the desired term of the given sequence is obtained. Thus, for this pattern to continue,
another 6 should appear in line (4), meaning that the next term in line (3) would have
to be . The next term in line (2) would be . Finally, the
next term in the given sequence would be . The final scheme of
numbers is shown below.

114 � 88 � 202
58 � 30 � 8824 � 6 � 30

14 22 32 44 58

8 10 12 14

2 2 2

E X A M P L E 1 Use the method of successive differences to determine the next
number in each sequence.

(a)
Using the scheme described above, obtain the following:
14, 22, 32, 44, . . .

Once the row of 2s was obtained and extended, we were able to get
, and , as shown above. The next number in the se-

quence is 58.

(b)
Proceeding as before, obtain the following diagram.
5, 15, 37, 77, 141, . . .

44 � 14 � 5812 � 2 � 14

5 15 37 77 141 235

10 22 40 64 94

12 18 24 30

6 6 6

The next number in the sequence is 235. �

The method of successive differences will not always work. For example, try it
on the Fibonacci sequence in Example 2(b) of Section 1.1 and see what happens!

mmi_bounce01.html?1_2
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Number Patterns One of the most amazing aspects of mathematics is its seem-
ingly endless variety of number patterns. Observe the following pattern:

In each case, the left side of the equation is the indicated sum of the consecutive odd
counting numbers beginning with 1, and the right side is the square of the number
of terms on the left side. You should verify this in each case. Inductive reasoning
would suggest that the next line in this pattern is

Evaluating each side shows that each side simplifies to 36.
Can we conclude from these observations that this pattern will continue indefi-

nitely? The answer is no, because observation of a finite number of examples does
not guarantee that the pattern will continue. However, mathematicians have proved
that this pattern does indeed continue indefinitely, using a method of proof called
mathematical induction. (See any standard college algebra text.)

Any even counting number may be written in the form 2k, where k is a count-
ing number. It follows that the kth odd counting number is written . For ex-
ample, the third odd counting number, 5, can be written . Using these ideas,
we can write the result obtained above as follows.

E X A M P L E 2 In each of the following, several equations are given illustrat-
ing a suspected number pattern. Determine what the next equation would be, and
verify that it is indeed a true statement.

The left side of each equation is the square of the sum of the first n counting
numbers, while the right side is the sum of their cubes. The next equation in the pat-
tern would be

Each side of the above equation simplifies to 225, so the pattern is true for this
equation.

�1 � 2 � 3 � 4 � 5�2 � 13 � 23 � 33 � 43 � 53.

 �1 � 2 � 3 � 4�2 � 13 � 23 � 33 � 43

  �1 � 2 � 3�2 � 13 � 23 � 33

 �1 � 2�2 � 13 � 23

 12 � 13

2�3� � 1
2k � 1

1 � 3 � 5 � 7 � 9 � 11 � 62.

 1 � 3 � 5 � 7 � 9 � 52.

 1 � 3 � 5 � 7 � 42

 1 � 3 � 5 � 32

 1 � 3 � 22

 1 � 12

Sum of the First n Odd Counting Numbers
If n is any counting number,

1 � 3 � 5 � ��� � (2n � 1) � n2.

(a)
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The left sides of the equations contain the sum of odd counting numbers, start-
ing with the first (1) in the first equation, the second and third (3 and 5) in the sec-
ond equation, the fourth, fifth, and sixth (7, 9, and 11) in the third equation, and so
on. The right side contains the cube (third power) of the number of terms on the left
side in each case. Following this pattern, the next equation would be

which can be verified by computation.

The left side of each equation gives the indicated sum of the first n counting
numbers, and the right side is always of the form

For the pattern to continue, the next equation would be

Since each side simplifies to 15, the pattern is true for this equation. �

The patterns established in Examples 2(a) and 2(c) can be written as follows.

 1 � 2 � 3 � 4 � 5 �
5 � 6

2
.

 
n�n � 1�

2
.

 1 � 2 � 3 � 4 �
4 � 5

2

 1 � 2 � 3 �
3 � 4

2

 1 � 2 �
2 � 3

2

 1 �
1 � 2

2

 21 � 23 � 25 � 27 � 29 � 53,

 13 � 15 � 17 � 19 � 43

 7 � 9 � 11 � 33

 3 � 5 � 23

 1 � 13

Two Special Sum Formulas
For any counting number n,

and  1 � 2 � 3 � ��� � n �
n(n � 1)

2
.

 (1 � 2 � 3 � ��� � n)2 � 13 � 23 � 33 � ��� � n3

(b)

(c)
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The second formula given is a generalization of the method first explained pre-
ceding Exercise 43 in the previous section, relating the story of young Carl Gauss.
We can provide a general, deductive argument showing how this equation is ob-
tained. Suppose that we let S represent the sum . This sum can
also be written as . Now write these two
equations as follows.

Since the right side of the equation has n terms, each of them being , we can
write it as n times .

Divide both sides by 2.

Now that this formula has been verified in a general manner, we can apply de-
ductive reasoning to find the sum of the first n counting numbers for any given value
of n. (See Exercises 21–24.)

Figurate Numbers The Greek mathematician Pythagoras (c. 540 B.C.) was
the founder of the Pythagorean brotherhood. This group studied, among other things,
numbers of geometric arrangements of points, such as triangular numbers, square
numbers, and pentagonal numbers. Figure 5 illustrates the first few of each of these
types of numbers.

The figurate numbers possess numerous interesting patterns. Every square num-
ber greater than 1 is the sum of two consecutive triangular numbers. (For example,

and .) Every pentagonal number can be represented as the
sum of a square number and a triangular number. (For example, and

.)
In the expression n is called a subscript. is read “T sub n,” and it repre-

sents the triangular number in the nth position in the sequence. For example,

, and

and represent the nth square and pentagonal numbers respectively.PnSn

T4 � 10.T3 � 6T2 � 3,T1 � 1,

TnTn,
12 � 9 � 3

5 � 4 � 1
25 � 10 � 159 � 3 � 6

 S �
n�n � 1�

2

 2S � n�n � 1�

�n � 1�
�n � 1�

 2S � �n � 1� � �n � 1� � �n � 1� � � � � � �n � 1�

� �n � 1� � �n � 2� � � � � � 1S � n

� � � � � n� 3� 2S � 1

S � n � �n � 1� � �n � 2� � � � � � 1
1 � 2 � 3 � � � � � n

Pythagoras The Greek
mathematician Pythagoras lived
during the sixth century B.C. He
and his fellow mathematicians
formed the Pythagorean
brotherhood, devoted to the study
of mathematics and music. The
Pythagoreans investigated the
figurate numbers introduced in
this section. They also discovered
that musical tones are related to
the lengths of stretched strings 
by ratios of counting numbers.
You can test this on a cello. Stop
any string midway, so that the
ratio of the whole string to the part
is 2�1. If you pluck the free half 
of the string, you get the octave
above the fundamental tone of the
whole string. The ratio 3�2 gives
you the fifth above the octave, and
so on. The string ratio discovery
was one of the first concepts of
mathematical physics.

Formulas for Triangular, Square, and Pentagonal Numbers
For any natural number n,

the nth triangular number is given by

the nth square number is given by and

the nth pentagonal number is given by Pn �
n(3n � 1)

2
.

 Sn � n2,

Tn �
n(n � 1)

2
,

Add the corresponding
sides.

Cory Clough


Cory Clough
Photo not available
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FIGURE 5

E X A M P L E 3 Use the formulas to find each of the following.

(a) the seventh triangular number

(b) the twelfth square number

(c) the sixth pentagonal number

�

E X A M P L E 4 Show that the sixth pentagonal number is equal to 3 times the
fifth triangular number, plus 6.

From Example 3(c), . The fifth triangular number is 15. According to the
problem,

�

The general relationship examined in Example 4 can be written as follows:

Pn � 3 � Tn�1 � n �n � 2�.

 51 � 3�15� � 6 � 45 � 6 � 51.

P6 � 51

P6 �
6�3�6� � 1�

2
�

6�18 � 1�
2

�
6�17�

2
� 51

S12 � 122 � 144

T7 �
7�7 � 1�

2
�

7�8�
2

�
56

2
� 28

1510631

Triangular
numbers

25

22

Square
numbers

Pentagonal
numbers

16941

1251
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1 5 12 22 35 51

4 7 10 13 16

3 3 3 3

Other such relationships among figurate numbers are examined in the exercises of
this section.

The method of successive differences, introduced at the beginning of this section,
can be used to predict the next figurate number in a sequence of figurate numbers.

E X A M P L E 5 The first five pentagonal numbers are

1, 5, 12, 22, 35.

Use the method of successive differences to predict the sixth pentagonal number.

After the second line of successive differences, we can work backward to find
that the sixth pentagonal number is 51, which was also found in Example 3(c).

�

Take any three-digit number whose digits are
not all the same. Arrange the digits in decreasing
order, and then arrange them in increasing order.
Now subtract. Repeat the process, using a 0 if
necessary in the event that the difference
consists of only two digits. For example, suppose
that we choose the digits 1, 4, and 8.

841 963 954

�148 �369 �459

693 594 495

Notice that we have obtained the number 495,
and the process will lead to 495 again. The
number 495 is called a Kaprekar number, and it

will eventually always be generated if this
process is followed for such a three-digit number.

For Group Discussion

1. Have each student in a group of students
apply the process of Kaprekar to a different
two-digit number, in which the digits are not
the same. (Interpret 9 as 09 if necessary.)
Compare the results. What seems to 
be true?

2. Repeat the process for four digits, with each
student in the group comparing results after
several steps. What conjecture can the group
make for this situation?

F O R  F U R T H E R T H O U G H T
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