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Earlier we introduced and studied the concept of a set, a collection of elements. A
set, in itself, may have no particular structure. But when we introduce ways of com-
bining the elements (called operations) and ways of comparing the elements (called
relations), we obtain a mathematical system.

Symbols designed to represent
objects or ideas are among the
oldest inventions of humans.
These Indian symbols in Arizona
are several hundred years old.

Tally sticks like this one were
used by the English in about
1400 A.D. to keep track of financial
transactions. Each notch stands
for one pound sterling.

4.1

Mathematical System
A mathematical system is made up of three components:

1. a set of elements;
2. one or more operations for combining the elements;
3. one or more relations for comparing the elements.

A familiar example of a mathematical system is the set of whole numbers
along with the operation of addition and the relation of equality.

Historically, the earliest mathematical system to be developed involved the set
of counting numbers or initially a limited subset of the “smaller” counting numbers.
The various ways of symbolizing and working with the counting numbers are called
numeration systems. The symbols of a numeration system are called numerals.

Historical Numeration Systems
Primitive societies have little need for large numbers. Even today, the languages 
of some cultures contain no words for numbers beyond “one,” “two,” and maybe an 
indefinite word suggesting “many.” For example, according to UCLA physiologist
Jared Diamond (Discover, Aug. 1987, p. 38), there are Gimi villages in New Guinea
that use just two root words—iya for one and rarido for two. Slightly larger num-
bers are indicated using combinations of these two: for example, rarido-rarido is
four and rarido-rarido-iya is five.

A practical method of keeping accounts by matching may have developed as humans
established permanent settlements and began to grow crops and raise livestock. People
might have kept track of the number of sheep in a flock by matching pebbles with the
sheep, for example. The pebbles could then be kept as a record of the number of sheep.

A more efficient method is to keep a tally stick. With a tally stick, one notch or
tally is made on a stick for each sheep. Tally sticks and tally marks have been found
that appear to be many thousands of years old. Tally marks are still used today: for
example, nine items are tallied by writing 

Tally sticks and groups of pebbles were an important advance in counting. By
these methods, the idea of number began to develop. Early people began to see that
a group of three chickens and a group of three dogs had something in common: the
idea of three. Gradually, people began to think of numbers separately from the things
they represented. Words and symbols were developed for various numbers.

The numerical records of ancient people give us some idea of their daily lives and
create a picture of them as producers and consumers. For example, Mary and Joseph
went to Bethlehem to be counted in a census—a numerical record. Even earlier than
that, as long as 5000 years ago, the Egyptian and Sumerian peoples were using large
numbers in their government and business records. Ancient documents reveal some
of their numerical methods, as well as those of the Greeks, Romans, Chinese, and
Hindus. Numeration systems became more sophisticated as the need arose.

���� ����.

�0, 1, 2, 3, . . .�,



TABLE 1 Early Egyptian Symbols

Number Symbol Description

1 Stroke

10 Heel bone

100 Scroll

1000 Lotus flower

10,000 Pointing finger

100,000 Burbot fish

1,000,000 Astonished person

E X A M P L E 1 Write in our system the number below.

Refer to Table 1 for the values of the Egyptian symbols. Each repre-
sents 100,000. Therefore, two s represent or 200,000. Proceed as
follows:

two

five

four

nine

seven

.

The number is 205,497. �

 205,497

 7 � 1 � 7

 9 � 10 � 90

 4 � 100 � 400

 5 � 1000 � 5000

 2 � 100,000 � 200,000

2 � 100,000,
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Ancient Egyptian Numeration—Simple Grouping Early matching
and tallying led to the essential ingredient of all more advanced numeration systems,
that of grouping. Grouping allows for less repetition of symbols and also makes 
numerals easier to interpret. Most historical systems, including our own, have used
groups of ten, indicating that people commonly learn to count by using their fingers.
The size of the groupings (again, usually ten) is called the base of the number sys-
tem. Bases of five, twenty, and sixty have also been used.

The ancient Egyptian system is an example of a simple grouping system. It uti-
lized ten as its base, and its various symbols are shown in Table 1. The symbol for 
1 ( ) is repeated, in a tally scheme, for 2, 3, and so on up to 9. A new symbol is 
introduced for 10 ( ), and that symbol is repeated for 20, 30, and so on, up to 90.
This pattern enabled the Egyptians to express numbers up to 9,999,999 with just the
seven symbols shown in the table.

Much of our knowledge of
Egyptian mathematics comes
from the Rhind papyrus, from
about 3800 years ago. A small
portion of this papyrus, showing
methods for finding the area of a
triangle, is reproduced here.

Applied Mathematics An
Egyptian tomb painting shows
scribes tallying the count of a
grain harvest. Egyptian
mathematics was oriented more to
practicality than was Greek or
Babylonian mathematics, although
the Egyptians did have a formula
for finding the volume of a certain
portion of a pyramid.

The Egyptian symbols used denote the various powers of the base (ten):

The smaller numerals at the right of the 10s, and slightly raised, are called
exponents.

105 � 100,000, and 106 � 1,000,000 .

100 � 1, 101 � 10, 102 � 100, 103 � 1000, 104 � 10,000,
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E X A M P L E 2 Write 376,248 in Egyptian symbols.

Writing this number requires three s, seven s, six s, two s, four s,
and eight s, or

. �

Notice that the position or order of the symbols makes no difference in a 
simple grouping system. Each of the numbers , , and 
would be interpreted as 234. The most common order, however, is that shown in Ex-
amples 1 and 2, where like symbols are grouped together and groups of higher-
valued symbols are positioned to the left.

A simple grouping system is well suited to addition and subtraction. For exam-

ple, to add and in the early Egyptian system, work as

shown. Two s plus six s equal to eight s, and so on.

Sum:

While we used a sign for convenience and drew a line under the numbers, the
Egyptians did not do this.

Sometimes regrouping, or “carrying,” is needed as in the example below in
which the answer contains more than nine heel bones. To regroup, get rid of ten heel
bones from the tens group. Compensate for this by placing an extra scroll in the hun-
dreds group.

Sum:

Subtraction is done in much the same way, as shown in the next example.

�

Roman numerals still appear
today, mostly for decorative
purposes: on clock faces, for
chapter numbers in books, and so
on. The system is essentially base
ten, simple grouping, but with
separate symbols for the
intermediate values 5, 50, and
500, as shown above. If I is
positioned left of V or X, it is
subtracted rather than added.
Likewise for X appearing left of L
or C, and for C appearing left of D
or M. Thus, for example, whereas
CX denotes 110, XC denotes 90.

Number Symbol

1 I
5 V

10 X
50 L

100 C
500 D

1000 M

Regrouped answer:

E X A M P L E 3 Subtract in each of the following.

(a) (b)

In part (b), to subtract four s from two s, “borrow” one heel bone, which is
equivalent to ten s. Finish the problem after writing ten additional s on the right.

Difference:
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Regrouped:

Difference: �

A procedure such as those described above is called an algorithm: a rule or
method for working a problem. The Egyptians used an interesting algorithm for 
multiplication that requires only an ability to add and to double numbers, as shown
in Example 4. For convenience, this example uses our symbols rather than theirs.

What About the Greeks?
Classical Greeks used letters of
their alphabet as numerical
symbols. The base of the system
was the number 10, and
numbers 1 through 9 were
symbolized by the first nine letters
of the alphabet. Rather than using
repetition or multiplication, they
assigned nine more letters to
multiples of 10 (through 90) and
more letters to multiples of 100
(through 900). This is called a
ciphered system, and it sufficed
for small numbers. For example,
57 would be ; 573 would be

and 803 would be A
small stroke was used with a units
symbol for multiples of 1000 (up
to 9000); thus 1000 would be 
or Often M would indicate
tens of thousands (M for
myriad 10,000) with the
multiples written above M.

�
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Greek Numerals

1 a 60 j

2 b 70 o

3 g 80 p

4 d 90 w

5 e 100 r

6 ß 200 s

7 z 300 t

8 h 400 y

9 u 500 f

10 i 600 x

20 k 700 c

30 l 800 v

40 m 900 |

50 n

E X A M P L E 4 A stone used in building a pyramid has a rectangular base
measuring 5 by 18 cubits. Find the area of the base.

The area of a rectangle is found by multiplying the length and the width; in this
problem, we must find . To begin, build two columns of numbers, as shown
below. Start the first column with 1, and the second column with 18. Each column
is built downward by doubling the number above. Keep going until the first column
contains numbers that can be added to equal 5. Here . To find add
only those numbers from the second column that correspond to 1 and 4. Here 18 
and 72 are added to get the answer 90. The area of the base of the stone is 90 square
cubits.

Finally, �5 � 18 � 90.

 � 18 � 72 � 90
Corresponds to 1

Corresponds to 4

1 � 4 � 5 � l

l

1
2

4

18
36

72
 

k

k

5 � 18,1 � 4 � 5

5 � 18

E X A M P L E 5 Use the Egyptian multiplication algorithm to find .

l 1 70 k

l 2 140 k

4 280

8 560

l 16 1120 k

Form two columns, headed by 1 and by 70. Keep doubling until there are num-
bers in the first column that add up to 19. (Here, .) Then add cor-
responding numbers from the second column: so that

�

Traditional Chinese Numeration—Multiplicative Grouping Ex-
amples 1 through 3 above show that simple grouping, although an improvement
over tallying, still requires considerable repetition of symbols. To denote 90, for

example, the ancient Egyptian system must utilize nine s: . If an add-
tional symbol (a “multiplier”) was introduced to represent nine, say “9,” then 90
could be denoted 9 . All possible numbers of repetitions of powers of the base
could be handled by introducing a separate multiplier symbol for each counting
number less than the base. Although the ancient Egyptian system apparently did not
evolve in this direction, just such a system was developed many years ago in China.

19 � 70 � 1330.
70 � 140 � 1120 � 1330,
1 � 2 � 16 � 19

19 � 70
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E X A M P L E 6 Interpret the Chinese numerals below.

(a) (b)

Total: 703

Total: 3164

(c) (d)

Total: 5009 �
9�� 1� � 9

2 � 100 � 200�0�� 100� � 000�
�4 � 1000 � 4000�5 � 1000 � 5000

4�� 1� � 4

3�� 1� � 3�6 � 10 � 60

0�� 10� � 00�1 � 100 � 100

�7 � 100 � 700�3 � 1000 � 3000
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It was later adopted, for the most part, by the Japanese, with several versions occur-
ring over the years. Here we show the predominant Chinese version, which used the
symbols shown in Table 2. We call this type of system a multiplicative grouping
system. In general, such a system would involve pairs of symbols, each pair con-
taining a multiplier (with some counting number value less than the base) and then
a power of the base. The Chinese numerals are read from top to bottom rather than
from left to right.

Three features distinguish this system from a strictly pure multiplicative group-
ing system. First, the number of 1s is indicated using a single symbol rather than a
pair. In effect, the multiplier is written but the power of the base 
is not. Second, in the pair indicating 10s, if the multiplier is 1, then that multiplier is
omitted. Just the symbol for 10 is written. Third, when a given power of the base is
totally missing in a particular number, this omission is shown by the inclusion of the
special zero symbol. (See Table 2.) If two or more consecutive powers are missing,
just one zero symbol serves to note the total omission. The omission of 1s and 10s,
and any other powers occurring at the extreme bottom of a numeral, need not be
noted with a zero symbol. (Note that, for clarification in the examples that follow,
we have emphasized the grouping into pairs by spacing and by using braces. These
features are not part of the actual numeral.)

�100��1, 2, 3,…, 9)

This photo is of a quipu. In
Ethnomathematics: A Multicultural
View of Mathematical Ideas,
Marcia Ascher writes:

A quipu is an assemblage of
colored knotted cotton cords.
Among the Inca, cotton cloth and
cordage were of great importance.
Used to construct bridges, in
ceremonies, for tribute, and in
every phase of the life cycle from
birth to death, cotton cordage and
cloth were of unparalleled
importance in Inca culture and,
hence, not a surprising choice for
its principal medium. The colors
of the cords, the way the cords
are connected, the relative
placement of the cords, the
spaces between the cords, the
types of knots on the individual
cords, and the relative placement
of the knots are all part of the
logical-numerical recording.

TABLE 2

Number Symbol

1
2
3
4
5
6
7
8
9

10
100

1000

0

E X A M P L E 7 Write Chinese numerals for these numbers.

(a) 614

This number is made up of six 100s, one 10, and one 4,
as depicted at the right.

4�� 1�:

�1 ��10:

6 � 100: �

Total: 42000�� 10� � 00
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Babylonian numeration was
positional, base sixty. But the face
values within the positions were
base ten simple grouping
numerals, formed with the two
symbols shown above. (These
symbols resulted from the
Babylonian method of writing on
clay with a wedge-shaped stylus.)
The numeral

denotes 1421 (23 � 60 
� 41 � 1).
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(b) 5090

The number consists of five 1000s, no 100s,  and
nine 10s (no 1s).

Hindu-Arabic Numeration—Positional System A simple grouping
system relies on repetition of symbols to denote the number of each power of the
base. A multiplicative grouping system uses multipliers in place of repetition, which
is more efficient. But the ultimate in efficiency is attained only when we proceed to
the next step, a positional system, in which only the multipliers are used. The vari-
ous powers of the base require no separate symbols, since the power associated with
each multiplier can be understood by the position that the multiplier occupies in the
numeral. If the Chinese system had evolved into a positional system, then the nu-
meral for 7482 could be written

rather than

The lowest symbol is understood to represent two 1s , the next pair up denotes
eight 10s then four 100s and finally seven 1000s Each symbol in
a numeral now has both a face value, associated with that particular symbol (the
multiplier value), and a place value (a power of the base), associated with the place,
or position, occupied by the symbol.

�103�.�102�,�101�,
�100�

Finger Reckoning There is
much evidence that early humans
(in various cultures) used their
fingers to represent numbers. As
calculations became more
complicated, finger reckoning, 
as shown in this sketch, became
popular. The Romans became
adept at this sort of calculating,
carrying it to 10,000 or perhaps
higher.

.

9 � 10: �
0�� 100�:

5 � 1000: �

Positional Numeration
In a positional numeral, each symbol (called a digit) conveys two things:

1. face value—the inherent value of the symbol
2. place value—the power of the base which is associated with the

position that the digit occupies in the numeral.

The place values in a Hindu-Arabic numeral, from right to left, are 1, 10, 100,
1000, and so on. The three 4s in the number 46,424 all have the same face value but
different place values. The first 4, on the left, denotes four 10,000s, the next one de-
notes four 100s, and the one on the right denotes four 1s. Place values (in base ten)
are named as shown here:

8, 3 2 1, 4 5 6, 7 9 5 .

This numeral is read as eight billion, three hundred twenty-one million, four hundred
fifty-six thousand, seven hundred ninety-five.

Billio
ns,

Hundred
 th

ousan
ds

Hundred
 m

illio
ns

Millio
ns,

Ten
 m

illio
ns

Ten
 th

ousan
ds

Thousan
ds,

Ten
s

Deci
mal p

oint.

Hundred
s

Units

Number Symbol

1
10



4.1 E X E R C I S E S

Convert each Egyptian numeral to Hindu-Arabic form.

1. 2.

3. 4.

Convert each Hindu-Arabic numeral to Egyptian form.

5. 23,145 6. 427 7. 8,657,000 8. 306,090
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To work successfully, a positional system must have a symbol for zero to 
serve as a placeholder in case one or more powers of the base are not needed. Be-
cause of this requirement, some early numeration systems took a long time to
evolve to a positional form, or never did. Although the traditional Chinese system
does utilize a zero symbol, it never did incorporate all the features of a positional
system, but remained essentially a multiplicative grouping system.

The one numeration system that did achieve the maximum efficiency of 
positional form is our own system, commonly known for historical reasons 
as the Hindu-Arabic system. It was developed over many centuries. Its symbols
have been traced to the Hindus of 200 B.C. They were picked up by the Arabs and 
eventually transmitted to Spain, where a late tenth-century version appeared 
like this:

.

The earliest stages of the system evolved under the influence of navigational,
trade, engineering, and military requirements. And in early modern times, the 
advance of astronomy and other sciences led to a structure well suited to fast and
accurate computation. The purely positional form that the system finally assumed
was introduced to the West by Leonardo Fibonacci of Pisa (1170–1250) early in
the thirteenth century. But widespread acceptance of standardized symbols and
form was not achieved until the invention of printing during the fifteenth century.
Since that time, no better system of numeration has been devised, and the posi-
tional base ten Hindu-Arabic system is commonly used around the world today.
(In India, where it all began, standardization still is not totally achieved, as vari-
ous local systems are used today.)

In the next section we shall look in more detail at the structure of the Hindu-
Arabic system and some early methods and devices for doing computation.

From Tally to Tablet The clay
tablet above, despite damage,
shows the durability of the mud of
the Babylonians. Thousands of
years after the tablets were made,
Babylonian algebra problems can
be worked out from the original
writings.

In recent times, herdsmen
make small “tokens” out of this
clay as tallies of animals. Similar
tokens, some 10,000 years old,
have been unearthed by
archaeologists in the land that was
once Babylonia. Shaped like balls,
disks, cones, and other regular
forms, they rarely exceed 5 cm in
diameter.
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