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Finite Mathematical Systems
We continue our study of mathematical systems by considering examples built upon
finite sets. Some examples here will consist of numbers, but others will be made up
of elements denoted by letters. And the operations are often represented by abstract
symbols with no particular mathematical meaning. This is to make the point that a
system is characterized by how its elements behave under its operations, not by the
choice of symbols used.

To begin, let us introduce a finite mathematical system made up of the set of el-
ements , and an operation we shall write with the symbol ✩ . We give mean-
ing to operation ✩ by displaying an operation table, which shows how operation ✩
combines any two elements from the set . The operation table for ✩ is
shown in Table 10. To use the table to find, say, c ✩ d, first locate c on the left, and
d across the top. This row and column give b, so that

c ✩

The important properties to look for in a system are the following: closure,
commutative, associative, identity, and inverse. Let us decide which properties are
satisfied by the system made up of and operation ✩ .

Closure Property For this system to be closed under the operation ✩ , the 
answer to any possible combination of elements from the system must be in the set

. A glance at Table 10 shows that the answers in the body of the table are all
elements of this set. This means that the system is closed. If an element other than a,
b, c, or d had appeared in the body of the table, the system would not have been closed.

Commutative Property In order for the system to have the commutative
property, it must be true that � ✩ ✩ �, where � and � stand for any elements
from the set . For example,

c ✩ and d ✩ so c ✩ ✩

To see that the same is true for all choices of � and �, observe that Table 11 is
symmetric with respect to the diagonal line shown. This “diagonal line test” estab-
lishes that ✩ is a commutative operation for this system.

Associative Property The system is associative if ✩ ✩ ✩

✩ , where �, �, and � represent any elements from the set . There
is no quick way to check a table for the associative property, as there is for the com-
mutative property. All we can do is try some examples. Using the table that defines
operation ✩ ,

✩ ✩ ✩ and a ✩ ✩ ✩

so that ✩ ✩ ✩ ✩

In the same way, b ✩ ✩ ✩ ✩

In both these examples, changing the location of parentheses did not change the
answers. Since the two examples worked, we suspect that the system is associative.
We cannot be sure of this, however, unless every possible choice of three letters from
the set is checked. (Although we have not completely verified it here, this system
does, in fact, satisfy the associative property.)

d .c�d� � �b�c
b� .�db � ad��a

c � c ,b� � a�db � c ,b � dd��a

�a, b, c, d �����
� � �����

c .d � dc � b ,d � b

�a, b, c, d �
� � �

�a, b, c, d �

�a, b, c, d �

d � b .

�a, b, c, d �

�a, b, c, d �

4.4

✩ a b c d

a a b c d
b b d a c
c c a d b
d d c b a

✩ a b c d

a a b c d
b b d a c
c c a d b
d d c b a

TABLE 10

TABLE 11
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Identity Property For the identity property to hold, there must be an element
� from the set of the system such that � ✩ and X ✩ , where X rep-
resents any element from the set . We can see that a is such an element as
follows. In Table 11, the column below a (at the top) is identical to the column at the
left, and the row across from a (at the left) is identical to the row at the top. There-
fore, a is in fact the identity element of the system. (It is shown in more advanced
courses that if a system has an identity element, it has only one.)

Inverse Property We found above that a is the identity element for the system
using operation ✩ . Is there any inverse in this system for, say, the element b? If �
represents the inverse of b in this system, then

b ✩ and � ✩ (since a is the identity element).

Inspecting the table for operation ✩ shows that � should be replaced with c:

b ✩ and c ✩

We can inspect the table to see if every element of our system has an inverse in 
the system. We see (in Table 11) that the identity element a appears exactly once in each
row, and that, in each case, the pair of elements that produces a also produces it in the
opposite order. Therefore, we conclude that the system satisfies the inverse property.

In summary, the mathematical system made up of the set and opera-
tion ✩ satisfies the closure, commutative, associative, identity, and inverse properties.

The basic properties that may (or may not) be satisfied by a mathematical system
involving a single operation follow.

�a, b, c, d �

b � a .c � a

b � a� � a

�a, b, c, d �
� � XX � X

Bernard Bolzano (1781 –1848)
was an early exponent of rigor and
precision in mathematics. Many
early results in such areas as
calculus were produced by the
masters in the field; these masters
knew what they were doing and
produced accurate results.
However, their sloppy arguments
caused trouble in the hands of the
less gifted. The work of Bolzano
and others helped put mathematics
on a strong footing.

Potential Properties of a Single-Operation System
Here a, b, and c represent elements from the set of the system, and rep-
resents the operation of the system.

Closure The system is closed if for all elements a and b,

is in the set of the system.

Commutative The system has the commutative property if

for all elements a and b from the system.

Associative The system has the associative property if

for every choice of three elements a, b, and c of the system.

Identity The system has an identity element e (where e is in the set
of the system) if

and

for every element a in the system.

Inverse The system satisfies the inverse property if, for every
element a of the system, there is an element x in the system such that

and

where e is the identity element of the system.

x �� a � e ,a �� x � e

e �� a � aa �� e � a

(a �� b) �� c � a �� (b �� c)

a �� b � b �� a

a �� b

�
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E X A M P L E 1 The table in the margin is a table for the set 
under an operation designated �. Which of the properties above are satisfied by this
system?

All the numbers in the body of the table come from the set , so the
system is closed. If we draw a line from upper left to lower right, we could fold the
table along this line and have the corresponding elements match; the system has the
commutative property.

To check for the associative property, try some examples:

and

so that

Also,

Any other examples that we might try would also work. The system has the asso-
ciative property.

Since the column at the left of the multiplication table is repeated under 1 in the
body of the table, 1 is a candidate for the identity element in the system. To be sure
that 1 is indeed the identity element here, check that the row corresponding to 1 at
the left is identical with the row at the top of the table.

To find inverse elements, look for the identity element, 1, in the rows of the
table. The identity element appears in the second row, ; and in the bottom
row, ; so 1 and 5 both are their own inverses. There is no identity element
in the rows opposite the numbers 0, 2, 3, and 4, so none of these elements has an 
inverse.

In summary, the system made up of the set under this operation
� satisfies the closure, associative, commutative, and identity properties, but not
the inverse property. �

�0, 1, 2, 3, 4, 5�

5 � 5 � 1
1 � 1 � 1

5 � �4 � 2� � �5 � 4� � 2 .

2 � �3 � 5� � �2 � 3� � 5 .

�2 � 3� � 5 � 0 � 5 � 0 ,2 � �3 � 5� � 2 � 3 � 0

�0, 1, 2, 3, 4, 5�

�0, 1, 2, 3, 4, 5�

E X A M P L E 2 The table in the margin is a table for the set of numbers
under an operation designated �. Which of the properties are satis-

fied by this system?
Notice here that 0 is not an element of this system. This is perfectly legitimate.

Since we are defining the system, we can include (or exclude) whatever we wish.
Check that the system satisfies the closure, commutative, associative, and identity
properties, with identity element 1. Let us now check for inverses. The element 1 is
its own inverse, since . In row 2, the identity element 1 appears under the
number 4, so (and ), with 2 and 4 inverses of each other. Also,
3 and 5 are inverses of each other, and 6 is its own inverse. Since each number in the
set of the system has an inverse, the system satisfies the inverse property. �

When a mathematical system has two operations, rather than just one, we can
look for an additional, very important property, namely the distributive property.
For example, when we studied Hindu-Arabic arithmetic of counting numbers, we
saw that multiplication is distributive with respect to (or “over”) addition.

and

In each case, the factor 3 is “distributed” over the 5 and the 9.

 �5 � 9� � 3 � 5 � 3 � 9 � 3 .

 3 � �5 � 9� � 3 � 5 � 3 � 9

4 � 2 � 12 � 4 � 1
1 � 1 � 1

�1, 2, 3, 4, 5, 6�

� 0 1 2 3 4 5

0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

� 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 4 6 1 3 5
3 3 6 2 5 1 4
4 4 1 5 2 6 3
5 5 3 1 6 4 2
6 6 5 4 3 2 1



182 CHAPTER 4 Numeration and Mathematical Systems

Although the distributive property (as well as the other properties discussed
here) will be applied to the real numbers in general in a later section, we state it here
just for the system of integers.

Distributive Property of Multiplication with Respect 
to Addition
For integers a, b, and c, the distributive property holds for multiplica-
tion with respect to addition, so

and  (b � c) � a � b � a � c � a.

 a � (b � c) � a � b � a � c

E X A M P L E 3 Is addition distributive over multiplication?
To find out, exchange � and � in the first equation above:

We need to find out whether this statement is true for every choice of three numbers
that we might make. Try an example. If , , and ,

while

Since , we have . This false result is a
counterexample (an example showing that a general statement is false). This coun-
terexample shows that addition is not distributive over multiplication. �

Because subtraction of real numbers is defined in terms of addition, the distrib-
utive property of multiplication also holds with respect to subtraction.

3 � �4 � 5� � �3 � 4� � �3 � 5�23 � 56

 �a � b� � �a � c� � �3 � 4� � �3 � 5� � 7 � 8 � 56 .

 a � �b � c� � 3 � �4 � 5� � 3 � 20 � 23,

c � 5b � 4a � 3

a � �b � c� � �a � b� � �a � c� .

Distributive Property of Multiplication with Respect 
to Subtraction
For integers a, b, and c, the distributive property holds for multiplica-
tion with respect to subtraction, so

and  (b � c) � a � b � a � c � a.

 a � (b � c) � a � b � a � c

General Form of the Distributive Property
Let ✩ and be two operations defined for elements in the same set. Then
✩ is distributive over if

a ✩✩ ✩ ✩ ✩ ✩

for every choice of elements a, b, and c from the set.

c)b) �� (a(b �� c) � (a

�

�

The general form of the distributive property appears below.
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The final example illustrates how the distributive property may hold for a 
finite system.

✩ a b c d e

a a a a a a
b a b c d e
c a c e b d
d a d b e c
e a e d c b

a b c d e

a a b c d e
b b c d e a
c c d e a b
d d e a b c
e e a b c d

�

� 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7
2 2 4 6 0 2 4 6
3 3 6 1 4 7 2 5
4 4 0 4 0 4 0 4
5 5 2 7 4 1 6 3
6 6 4 2 0 6 4 2
7 7 6 5 4 3 2 1

� 1 2 3 4 5

1 1 2 3 4 5
2 2 4 0 2 4
3 3 0 3 0 3
4 4 2 0 4 2
5 5 4 3 2 1

E X A M P L E 4 Suppose that the set has two operations ✩ and 
defined by the tables below.

The distributive property of ✩ with respect to holds in this system. Verify for the
following case: e ✩ ✩ ✩ .

First evaluate the left side of the equation by using the tables.

e ✩ ✩ e Use the table.

Use the ✩ table.

Now, evaluate the right side of the equation.

✩ ✩ Use the ✩ table twice.

Use the table.

Both times the final result is b, and the distributive property is verified for this case.
�

�� b

b� � c � ed� � �e�e

� b

��d � b� � e

b�d� � �e�d � b� � �e
�

��a, b, c, d, e�
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