1. (a) (3 pts) Let G be a group. Define what it means for H to be a subgroup of G.

We say H is a subgroup of G if H is a subset of G and is a group with respect to the operation of G.

(b) (12 pts) Let G be a group and S a nonempty subset of G. Let

$$C(S) = \{ x \in G \mid xs = sx \; \forall s \in S \}.$$

Prove that C(S) is a subgroup of G. (Warning: S need not be finite.)

 $C(S) \subseteq G$ by definition. Note that es = se for all $s \in S$, so $e \in C(S)$. Now let $x, y \in C(S)$. Let $s \in S$. Since xs = sx and ys = sy,

$$(xy)s = x(ys) = x(sy) = (xs)y = (sx)y = s(xy).$$

This can be done for all $s \in S$, so xy commutes with all $s \in S$. Hence $xy \in C(S)$. Let $x \in C(S)$. Multiply xs = sx by x^{-1} on both sides to conclude

$$xs = sx$$

$$x^{-1} xs x^{-1} = x^{-1} sx x^{-1}$$

$$sx^{-1} = x^{-1}s.$$

Doing this for all $s \in S$ shows that $x^{-1} \in C(S)$. Hence C(S) is a subgroup of G.

2. (a) (3 pts) Let $d : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^{\geq 0}$ be a distance function. Define what it means for the map $\alpha : \mathbb{R}^2 \to \mathbb{R}^2$ to be an isometry.

A map $\alpha : \mathbb{R}^2 \to \mathbb{R}^2$ is an *isometry* if it is invertible and

$$d(\alpha(x), \alpha(y)) = d(x, y) \qquad \forall x, y \in \mathbb{R}^2.$$

(b) (12 pts) Prove that the set of M isometries of the real plane forms a group under composition. You may use the fact that composition of maps is associative. (Hint: for α to be an isometry, it needs to do <u>two</u> things.)

First let $\alpha, \beta \in M$. Since α and β are both invertible, so they are both one-to-one and onto, hence their composition is also one-to-one and onto by Thm 2.1, and then $\alpha \circ \beta : \mathbb{R}^2 \to \mathbb{R}^2$ is invertible. If $x, y \in \mathbb{R}^2$,

$$egin{aligned} d(lpha \circ eta(x), lpha \circ eta(y)) &= d(lpha(eta(x)), lpha(eta(y))) \ &= d(eta(x), eta(y)) \ &= d(x, y) \end{aligned}$$

where the second equality is because α preserves distances and the third because β preserves distances. So $\alpha \circ \beta \in M$ and \circ is an operation on M. Composition of maps is associative in general.

Note that $\iota_{\mathbb{R}^2}$ is clearly invertible and preserves distances, so it is in M and works as an identity with respect to composition.

Let $\alpha \in M$. Since α is invertible, $\alpha^{-1} : \mathbb{R}^2 \to \mathbb{R}^2$ exists and is also invertible by Exercise 2.20. If $x, y \in \mathbb{R}^2$, use the distance-preserving property of α to see

$$d(\alpha^{-1}(x), \alpha^{-1}(y)) = d(\alpha(\alpha^{-1}(x)), \alpha(\alpha^{-1}(y)))$$

= $d(x, y).$

So α^{-1} is also an isometry and $\alpha^{-1} \in M$. Now we can conclude M is a group under composition.

- 3. (5 pts each)
 - (a) Write $(1\ 2\ 3)(1\ 4\ 6\ 5) \in S_6$ in two-row notation.

(b) Write $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 6 & 3 & 7 & 2 & 1 & 4 \end{pmatrix}$ as a product of disjoint cycles.

 $(1\ 5\ 2\ 6)(3)(4\ 7) = (1\ 5\ 2\ 6)(4\ 7)$

(c) Write $(2 \ 6)(1 \ 5 \ 2 \ 4 \ 3 \ 6)(5 \ 1)$ as a product of disjoint cycles.

 $(1\ 6)(2\ 4\ 3)(5) = (1\ 6)(2\ 4\ 3)$

(d) Write (4 2 5 3) as a product of transpositions. Is this permutation even or odd?

 $(4\ 3)(4\ 5)(4\ 2)$, which is odd.

4. (5 pts each) Extra credit problems.

(a) Let G be a group in which $x^2 = e$ for all $x \in G$. Prove that G is abelian.

Let $x, y \in G$. Then $e = (xy)^2 = xyxy$. Multiply on the left by x and on the right by y to get

$$ey = x(xyxy)y = x^2 yx y^2 = yx$$

So xy = yx for any $x, y \in G$, hence G is abelian.

(b) Let * be an associative operation on the nonempty set S. Suppose that

$$x * x * y = y = y * x * x \qquad \forall x, y \in S.$$

Prove that S is a group under *. Is this group abelian?

Fix $x \in S$ and let y run through all the elements of S. Since (x * x) * y = y = y * (x * x) for all $y \in S$, x * x acts as an identity. So S has an identity e. In fact, for any $x \in S$, x * x = e, so x is its own inverse. We already know * is an operation on S and it is associative, so S is a group under *.

Notice that $x^2 = e$ for any $x \in S$, so by the previous problem, S is abelian.