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1. (a) (3 pts) State the definition of homomorphism.

Let G and H be groups. A map α : G → H is a homomorphism if α(xy) = α(x)α(y)
for all x, y ∈ G.

(b) (3 pts) State the definition of isomorphism.

Let G and H be groups. A map α : G → H is a isomorphism if it is invertible and is a
homomorphism.

(c) (5 pts) Prove that if α : G → H is an isomorphism then α−1 is also an isomorphism.

So α is invertible and hence α−1 : H → G exists and is also invertible. Let a, b ∈ H and
x = α−1(a), y = α−1(b). As x, y ∈ G

ab = α(x)α(y) = α(xy).

Now apply α−1 to both sides:

α−1(ab) = α−1(α(xy)) = xy = α−1(a) α−1(b).

So α−1 is a homomorphism.

(d) (6 pts) Prove that if α : G → H is an isomorphism and x ∈ G then |α(x)| = |x|.

Since α is a homomorphism, α(eG) = eH . But α is also one-to-one, so α(g) = eH iff
x = eG. So

α(x)n = α(xn) = eH ⇐⇒ xn = eG.

Therefore the smallest positive integer n for which α(x)n = eH is the same as the
smallest positive integer n for which xn = eG. Hence |α(x)| = |x|. If no such positive
integer exists then both orders are infinite.

2. Let G and G be groups and α : G → H a homomorphism. Let ∼ be a relation on G such
that

x ∼ y iff α(x) = α(y).

(a) (6 pts) Show that this is an equivalence relation.

Reflexive: If x ∈ G, then x ∼ x since α(x) = α(x).

Symmetric: If x, y ∈ G and x ∼ y then α(x) = α(y), so α(y) = α(x), so y ∼ x.

Transitive: If x, y, z ∈ G and x ∼ y and y ∼ z then α(x) = α(y) and α(y) = α(z),
so α(x) = α(z), so x ∼ z.

(b) (6 pts) Let K = {g ∈ G | α(g) = eH}. Prove that K is a subgroup of G.

Clearly, K ⊆ G. Since α(eG) = eH , eG ∈ K. If x, y ∈ K, then α(x) = α(y) = eH , so
α(xy) = α(x)α(y) = eH , and hence xy ∈ K. If x ∈ K then α(x−1) = α(x)−1 = e−1

H
=

eH , so x−1 ∈ K. Hence K / G.

(c) (5 pts) Let x, y ∈ G. Prove that x ∼ y iff xy−1 ∈ K.

x ∼ y ⇐⇒ α(x) = α(y) ⇐⇒ α(x)α(y)−1 = eH ⇐⇒

α(xy−1) = eH ⇐⇒ xy−1 ∈ K.



(d) (3 pts) What are the equivalence classes of ∼?

Notice that the condition in part (c) is the same that we used to define the equivalence
relation whose equivalence classes are the right cosets of K. So the equivalence classes
are the right cosets of K.

(e) (10 pts) Extra credit problem. Prove that gK = Kg for all g ∈ G, that is the left
and right cosets of K are the same. (Hint: In general this does not mean gk = kg for
all k ∈ K.

Since we are dealing with sets, we prove they are equal by showing gK ⊆ Kg and
Kg ⊆ gK. First observe that for any k ∈ K and g ∈ G,

α(gkg−1) = α(g)α(k)α(g)−1 = α(g)eHα(g)−1 = α(g)α(g)−1 = eH =⇒ gkg−1 ∈ K

and

α(g−1kg) = α(g)−1α(k)α(g) = α(g)−1eHα(g) = α(g)−1α(g) = eH =⇒ gkg−1 ∈ K.

Hence
gk = gkg−1g ∈ Kg and kg = gg−1kg ∈ gK.

The first implies gK ⊆ Kg and the second implies Kg ⊆ gK.

3. (a) (3 pts) Let G be a group and S ⊆ G. What is the definition of 〈S〉 the subgroup
generated by S?

〈S〉 is the smallest subgroup of G which contains S in the sense that if H /G and S ⊆ H,
then 〈S〉 / H.

(b) (10 pts) Let G be a finite group and g, h ∈ G such that 2 |g| = |G|. Prove that either
h = gn for some n ∈ Z or 〈g, h〉 = G.

Notice that 〈g〉 / 〈g, h〉 / G. Let k = |〈g, h〉|. By Lagrange’s Theorem, |g| = |〈g〉| divides
k which in turn divides |G| = 2 |g|. So k is a multiple of |g| and |g| ≤ k ≤ 2 |g|. Then k

must be either |g| or 2 |g|.

If k = |g|, then 〈g〉 = 〈g, h〉, so h ∈ 〈g〉, so h = gn for some n ∈ Z.

If k = 2 |g|, then 〈g, h〉 = G.

(c) (5 pts) Extra credit problem. Do part (b) assuming p |g| = |G| where p is a prime.

Let m = |g|. Then |G| = pm. Notice that 〈g〉 / 〈g, h〉 / G. Since |〈g〉| = m, Lagrange’s
Theorem says m | |〈g, h〉|. So |〈g, h〉| = km. Also by Lagrange, km | |G| = pm, so k | p.
Hence k = 1, p.

If k = 1, then 〈g〉 = 〈g, h〉, so h ∈ 〈g〉, so h = gn for some n ∈ Z.

If k = p, then 〈g, h〉 = G.

Remark: Part (b) is of course a special case of part (c), so I could have just given this
second proof and it would have taken care of both. But I didn’t expect you to come
up with this slightly more sophisticated proof right away without looking at the special
case first.


