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Math 3124 Final Exam

May 3, 2004

The exam is due at 5 PM on Monday, May 10 in the envelope on my office door. You may
use your textbook (Durbin), your notes, returned homework, and any solutions to the homework
and exams posted on the class website. You are not allowed to use any other books, or the internet,
or communicate with anyone else about this exam.

All of your answers must be carefully justified. Neat work, clear and to-the-point explanations
will receive more credit than messy, chaotic answers. This exam has 2 pages.

Submit this sheet as the cover sheet of your exam.

1. (5 pts each) Let G be a group. For an element x ∈ G define the map σx : G → G by

σx(g) = xgx−1.

(a) Prove that σx is an automorphism of G.
(b) Let α : G → Aut(G) be the map α(g) = σg. Prove that α is a homomorphism.
(c) Prove that im(α) is a normal subgroup of Aut(G).
(d) Recall the definition of the center of G from Exercise 7.24:

Z(G) = {g ∈ G | gh = hg ∀h ∈ G}.

Prove that Z(G) is a normal subgroup of G and

G/Z(G) ∼= im(α).

2. Let G be a group. Define the map σx : G → G as in the previous problem. Define the
following operation on the set G × G:

(x, y) ∗ (s, t) = (xσy(s), yt).

(a) (10 pts) Prove that G × G is a group with respect to this operation.
(b) (5 pts) Let e ∈ G be the identity and

H = {(g, e) | g ∈ G}.

Prove that H is a normal subgroup of G × G.

3. (5 pts each) Let G be a group. Define the map σx : G → G as in Problem 1.
(a) Let g ∈ G be fixed. For x, y ∈ G, define the relation ∼g as x ∼g y iff σx(g) = σy(g).

Show that ∼g is an equivalence relation on G.
(b) Recall the definition of the centralizer of g ∈ G from Exercise 7.23:

C(g) = {h ∈ G | hg = gh}.

We already know this is a subgroup of G, so we can look at its left cosets. Prove that
the left cosets of C(g) are the equivalence classes of ∼g.

4. (5 pts each) Let σ, φ ∈ Sn.
(a) Suppose σ = (a1 a2 . . . ak). Prove that

φ ◦ σ ◦ φ−1 = (φ(a1) φ(a2) . . . φ(ak)).

(b) Now suppose σ = (a1 a2 . . . ak) (b1 b2 . . . bm). Prove that

φ ◦ σ ◦ φ−1 = (φ(a1) φ(a2) . . . φ(ak)) (φ(b1) φ(b2) . . . φ(bm)).
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(c) Recall that the cycle structure of σ is defined as the partition n = n1 +n2 + · · ·nj whose
parts are the lengths of the disjoint cycles of σ. Conclude from the above that the cycle
structure of φ ◦ σ ◦ φ−1 is the same as the cycle structure of σ. In other words the cycle
structure is invariant under conjugation in Sn.

5. (5 pts each) Let R be a ring. Define the center of R as

Z(R) = {x ∈ R | xr = rx ∀ r ∈ R}.

(a) Prove that Z(R) is a subring of R.
(b) Find the center of M2(Z), the ring of 2 × 2 matrices with integer entries. (Hint: Let

Eij be a matrix whose (i, j)-entry is 1, and all other entries are 0. Try multiplying a
generic matrix by such matrices on both left and right.)

6. (10 pts) Let Zn be the ring as in Example 24.2. Prove that k ∈ Zn is a zero divisor if and
only if gcd(k, n) 6= 1. Conclude that Zp is an integral domain.

7. (15 pts) Let k1, k2, . . . , kn ∈ Z
∗ = Z\{0}. Define the greatest common divisor of k1, k2, . . . , kn

as the number d ∈ Z
+ such that

1. d|ki for all 1 ≤ i ≤ n,
2. if c|ki for all 1 ≤ i ≤ n, then c|d.

Denote this by gcd(k1, k2, . . . , kn).
Prove that such a number exists, is unique, and is an integer linear combination of

k1, k2, . . . , kn. (Hint: you don’t have to do this from scratch, you may use what you know
about the greatest common divisor of two integers.)

8. (5 pts each) Let α : G → H be a group homomorphism with K = ker(α). Let N be a normal
subgroup of G such that N ⊆ K. Define θ : G/N → H as

θ(Ng) = α(g).

(a) Prove that θ is well-defined.
(b) Let π : G → G/N be the canonical projection (π(g) = Ng). Show that α = θ ◦π. When

this happens, we say α factors through G/N .

9. (5 pts each) Extra credit problem. Let R be a ring.
(a) Prove that (a + b)(a − b) = a2 − b2 for all a, b ∈ R iff R is commutative.
(b) Prove that (a + b)2 = a2 + 2ab + b2 for all a, b ∈ R iff R is commutative.

10. (5 pts each) Extra credit problem. Let m, n ∈ Z be relatively prime.
(a) Let and a, b ∈ Z. Show that there exists x ∈ Z such that

x ≡ a mod m

x ≡ b mod n.

(b) Now suppose that 0 ≤ a < m and 0 ≤ b < n. Show that there exists a unique
0 ≤ x < mn such that

x ≡ a mod m

x ≡ b mod n.

11. (5 pts each) Extra credit problem. Let R be a ring with at least two elements. Suppose
that for any nonzero r ∈ R there exists a unique s ∈ R such that rsr = r. Prove the following
(a) R has no zero divisors.
(b) srs = s.
(c) R has a multiplicative identity.
(d) Every nonzero element of R has a multiplicative inverse, that is R is a division ring.
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