
Math 3124 Final Exam Solutions

May 13, 2004

1. (5 pts each) Let G be a group. For an element x ∈ G define the map σx : G → G by

σx(g) = xgx−1.

(a) Prove that σx is an automorphism of G.

Let g, h ∈ G. Then

σx(gh) = xghx−1 = xgx−1 xhx−1 = σx(g)σx(h).

So σx is a homomorphism. Notice that

σx−1 ◦ σx(g) = x−1(xgx−1)x = g ∀ g ∈ G

σx ◦ σx−1(g) = x(x−1gx)x−1 = g ∀ g ∈ G.

So σx−1 is inverse of σx, hence σx is an isomorphism. As σx : G → G, it is an automor-
phism of G.

Remark: you can also do this by showing that σx is one-to-one and onto.

(b) Let α : G → Aut(G) be the map α(g) = σg. Prove that α is a homomorphism.

We need to show α(xy) = α(x)α(y) for all x, y ∈ G, that is σxy = σx ◦ σy. Clearly, σxy

and σx ◦ σy have the same domains and codomains. For any g ∈ G,

σxy(g) = (xy)g(xy)−1 = xygy−1x = σx ◦ σy(g).

Remark: Remember you show two maps are equal by showing they have the same
domains and codomains, and they map everything in this domain to the same element
in the codomain. Most of you got the idea here, the biggest problem was getting the
notation right. One example of broken notation is α(xy) = σxy(g), where the LHS is a
map G → G and the RHS is an element of G.

(c) Prove that im(α) is a normal subgroup of Aut(G).

By Theorem 18.2.(d), im(α) is a subgroup of Aut(G). To show that it is a normal
subgroup, we need to verify that for all x ∈ G and all β ∈ Aut(G), β ◦σx ◦β−1 ∈ im(α).
For all g ∈ G,

β ◦ σx ◦ β−1(g) = β(σx(β−1(g))) = β(xβ−1(g)x−1) = β(x)gβ(x)−1 = σβ(x)(g).

So β ◦ σx ◦ β−1 = σβ(x) ∈ im(α).

Remark: Here some of you assumed that all elements in Aut(G) looked like σx for some
x ∈ G. In general, this is not true. Those elements of Aut(G) that look like conjugation
by an element of G are called inner automorphisms, while those that don’t are called
outer automorphisms. So here you showed that the inner automorphisms form a normal
subgroup of the automorphisms.
Another problem was that some of you forgot that in order to prove something is a
normal subgroup, you need to first prove that it’s a subgroup.
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(d) Recall the definition of the center of G from Exercise 7.24:

Z(G) = {g ∈ G | gh = hg ∀h ∈ G}.
Prove that Z(G) is a normal subgroup of G and

G/Z(G) ∼= im(α).

We will prove that ker(α) = Z(G). If x ∈ G then

x ∈ ker(α) ⇐⇒ σx = ιG ⇐⇒ σx(g) = g ∀ g ∈ G ⇐⇒

xgx−1 = g ∀ g ∈ G ⇐⇒ xg = gx ∀ g ∈ G ⇐⇒ x ∈ Z(G).

Clearly, Z(G) ⊆ G. Since Z(G) is the kernel of a homomorphism, it is a normal subgroup
of G. Now by the corollary to the Fundamental Homomorphism Theorem proved in class

G/Z(G) = G/ ker(α) ∼= im(α).

Remark: Once you show Z(G) = ker(α), you get for free that Z(G) is a normal subgroup.
There is no reason to waste time and effort proving this first, then showing that Z(G) =
ker(α).
To show Z(G) = ker(α), it is not enough to prove that α maps every element of Z(G)
to ιG. This only proves Z(G) ⊆ ker(α). You also need ker(α) ⊆ Z(G). Or you can just
prove both inclusions at the same time, as above.
Some of you tried to reprove the FHT here. There is no need to do that, you know the
theorem, use it.

2. Let G be a group. Define the map σx : G → G as in the previous problem. Define the
following operation on the set G × G:

(x, y) ∗ (s, t) = (xσy(s), yt).

(a) (10 pts) Prove that G × G is a group with respect to this operation.

Since σs(y) ∈ G, (xσy(s), yt) ∈ G × G, so G is indeed closed under ∗.
The element (e, e) works as an identity:

(e, e)(x, y) = (eσe(x), ey) = (x, y) ∀ (x, y) ∈ G × G

(x, y)(e, e) = (xσy(e), ye) = (xyey−1, y) = (x, y) ∀ (x, y) ∈ G × G

To find the inverse of (x, y)

(x, y) ∗ (s, t) = (e, e)

(xσy(t), yt) = (e, e),

so

yt = e =⇒ t = y−1

xσy(s) = e =⇒ σy(s) = x−1 =⇒ s = σy−1(x−1) = y−1x−1y,

where σy−1 appears because it is the inverse of σy. Hence (σy−1(x−1), y−1) is the right
inverse of (x, y). Let us show it also works as a left inverse:

(σy−1(x−1), y−1) ∗ (x, y) = (σy−1(x−1)σy−1(x), y−1y) = (σy−1(x−1x), e) = (e, e).
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Finally, for associativity, let (x, y), (s, t), (a, b) ∈ G × G.

((x, y) ∗ (s, t)) ∗ (a, b) = (xσy(s), yt) ∗ (a, b) = (xσy(s)σyt(a), ytb)

(x, y) ∗ ((s, t) ∗ (a, b)) = (x, y) ∗ (sσt(a), tb) = (xσy(sσt(a)), ytb)

= (xσy(s)σy(σt(a)), ysb) = (xσy(s)σyt(a), ysb)
√

where we shrewdly used the fact that σy is a homomorphism from 1.(a) and that σy◦σt =
σyt from 1.(b).

Remark: Most of you did these computations directly by expanding out what the σ’s
do. I did it this way for two reasons. One is to show the connection with problem 1,
and the other is because there is a deeper principle behind all this. What I gave you
here is an example of a semidirect product, which is something Durbin talks about on
p. 111, although he never mentions the word. He calls it an extension.
Here is what a semidirect product is. Take two groups G and H, and a homomorphism
α : H → Aut(G). Now define the following operation on G × H:

(g, h) ∗ (g′, h′) = (gα(h)(g′), hh′),

where α(h)(g′) means take the map in Aut(G) that α sends h to and apply it to g′. You
can prove this gives a group structure on G × H much the same way as above. (Why
not try?) This group is denoted G n H.

(b) (5 pts) Let e ∈ G be the identity and

H = {(g, e) | g ∈ G}.
Prove that H is a normal subgroup of G × G.

Again, the slick way to do this is to show H is the kernel of a homomorphism. Let
θ : G × G → G × G be defined as

θ(x, y) = (e, y).

It is easy to see that this is a homomorphism. Let (x, y), (s, t) ∈ G × G:

θ(x, y)θ(s, t) = (e, s) ∗ (e, t) = (eσs(e), st) = (e, st) = θ((x, y) ∗ (s, t)).

That ker(θ) = H is obvious. So H is a normal subgroup of G.

Remark: You can also do the proof directly, but don’t forget to prove that H is a
subgroup.

3. (5 pts each) Let G be a group. Define the map σx : G → G as in Problem 1.
(a) Let g ∈ G be fixed. For x, y ∈ G, define the relation ∼g as x ∼g y iff σx(g) = σy(g).

Show that ∼g is an equivalence relation on G.

For all x ∈ G, σx(g) = σx(g), so x ∼g x. Hence ∼g is reflexive. If x ∼g y, then
σx(g) = σy(g) =⇒ σy(g) = σx(g) =⇒ y ∼g x. Hence ∼g is symmetric. Let x ∼g y
and y ∼g z. Then σx(g) = σy(g) and σy(g) = σz(g), so σx(g) = σz(g), and hence x ∼g z.
Hence ∼g is transitive. Really, ∼g is an equivalence relation because = is.

Remark: You never need to use what the σ’s really do. In fact, let S and T be sets,
and M the set of maps S → T . Pick an element s ∈ S and define ∼s on M by α ∼s β
if α(s) = β(s). This is an equivalence relation on M by the same proof as above.
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(b) Recall the definition of the centralizer of g ∈ G from Exercise 7.23:

C(g) = {h ∈ G | hg = gh}.
We already know this is a subgroup of G, so we can look at its left cosets. Prove that
the left cosets of C(g) are the equivalence classes of ∼g.

Notice that

σx(g) = σy(g) ⇐⇒ xyx−1 = ygy−1 ⇐⇒ gx−1y = x−1yg ⇐⇒

x−1y ∈ C(g) ⇐⇒ xC(g) = yC(g).

In fact, ∼g is the same equivalence relation as x ∼ y iff x−1y ∈ C(g), whose equivalence
classes we know: they are the left cosets of C(g).

Remark: A frequent mistake here was to prove only half of the statement by showing
that two elements from the same left coset of C(g) are also equivalent under ∼g. But all
this shows is that the left cosets are contained in the equivalence classes of ∼g. For that
matter, if ∼g were the equivalence under which any two elements of G are equivalent,
this argument would still work. Make sure you understand that the equivalence class of
a doesn’t only consist of elements that are equivalent to a but it consists of all elements.

4. (5 pts each) Let σ, φ ∈ Sn.
(a) Suppose σ = (a1 a2 . . . ak). Prove that

φ ◦ σ ◦ φ−1 = (φ(a1) φ(a2) . . . φ(ak)).

The domains and the codomains of the maps on the LHS and the RHS are the same:
In = {1, 2, . . . , n}. To show that the maps are the same, we need to prove that they
send every element of the domain to the same element in the codomain. Let S =
{φ(a1), φ(a2), . . . , φ(ak)} ⊆ In.
Let m ∈ In. If m ∈ S, then m = φ(aj) for some 1 ≤ j ≤ k. Then

(φ(a1) φ(a2) . . . φ(ak))(m) =

{

φ(aj+1 if j < k

φ(a1) if j = k
,

and

φ ◦ σ ◦ φ−1(m) = φ ◦ σ ◦ φ−1(φ(aj)) = φ ◦ σ(aj) =

{

φ(aj+1 if j < k

φ(a1) if j = k
.

If m 6∈ S, then

(φ(a1) φ(a2) . . . φ(ak))(m) = m,

and since φ−1(m) 6∈ {a1, a2, . . . , an},
φ ◦ σ ◦ φ−1(m) = φ(σ(φ−1(m))) = φ(φ−1(m)) = m.

So the LHS and the RHS are indeed the same map.

Remark: There is no reason to assume that every element of the domain is of the form
φ(aj) for some 1 ≤ j ≤ k, this is why the second check needs to be done. A common
mistake I saw is the notation m ∈ σ. Since σ is a map and not a set, you cannot talk
about something being an element of σ. If you want to talk about m being a number
which σ sends to a different number, you can say σ(m) 6= m.
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(b) Now suppose σ = (a1 a2 . . . ak) (b1 b2 . . . bm). Prove that

φ ◦ σ ◦ φ−1 = (φ(a1) φ(a2) . . . φ(ak)) (φ(b1) φ(b2) . . . φ(bm)).

Just like in problem 1.(a),

φ ◦ σ ◦ φ−1 = φ(a1 a2 . . . ak) (b1 b2 . . . bm)φ−1

= φ(a1 a2 . . . ak)φ
−1 φ(b1 b2 . . . bm)φ−1(φ(a1)

= φ(a2) . . . φ(ak)) (φ(b1) φ(b2) . . . φ(bm)).

Remark: Observe that conjugation by φ in Sn is a special case of the map introduced in
problem 1, and this part is just a restatement that conjugation by φ is a homomorphism.
There is no need to assume that the two cycles of σ are disjoint, and this is not given
anyway.

(c) Recall that the cycle structure of σ is defined as the partition n = n1 +n2 + · · ·nj whose
parts are the lengths of the disjoint cycles of σ. Conclude from the above that the cycle
structure of φ ◦ σ ◦ φ−1 is the same as the cycle structure of σ. In other words the cycle
structure is invariant under conjugation in Sn.

Since φ is a one-to-one map, it send disjoint sets to disjoint sets. Therefore it sends
the disjoint cycles of σ to disjoint cycles. It is clear from part (a) that the lengths of
the cycles are preserved. The cycle structure of a permutation is the lengths of all the
disjoint cycles. Hence the cycle structures of σ and φ ◦ σ ◦ φ−1 are the same.

Remark: The observation that disjoint cycles remain disjoint after conjugating by φ is
crucial.

5. (5 pts each) Let R be a ring. Define the center of R as

Z(R) = {x ∈ R | xr = rx ∀ r ∈ R}.
(a) Prove that Z(R) is a subring of R.

Clearly, Z(R) ⊆ R. Since 0r = 0 = r0 for all r ∈ R, 0 ∈ Z(R), so Z(R) is nonempty.
Let x, y ∈ Z(R). Then

(x + y)r = xr + yr = rx + ry = r(x + y) ∀ r ∈ R,

so x + y ∈ Z(R). Also

(xy)r = x(yr) = x(ry) = (xr)y = (rx)y = r(xy) ∀ r ∈ R,

so xy ∈ Z(R).
Let x ∈ R. Then

(−x)r = −(xr) = −(rx) = r(−x) ∀ r ∈ R,

so −x ∈ Z(R).
By Theorem 25.2, Z(R) is a subring of R.

(b) Find the center of M2(Z), the ring of 2 × 2 matrices with integer entries. (Hint: Let
Eij be a matrix whose (i, j)-entry is 1, and all other entries are 0. Try multiplying a
generic matrix by such matrices on both left and right.)

5



Let

M =

(
a b
c d

)

∈ M2(Z)

be a generic matrix. If M is in the center, then it must commute with all other matrices.
In particular,
(

a 0
c 0

)

=

(
a b
c d

) (
1 0
0 0

)

= ME1,1 = E1,1M =

(
1 0
0 0

) (
a b
c d

)

=

(
a b
0 0

)

which implies b = c = 0. Also
(

0 a
0 c

)

=

(
a b
c d

) (
0 1
0 0

)

= ME1,2 = E1,2M =

(
0 1
0 0

) (
a b
c d

)

=

(
c d
0 0

)

which further implies a = d. So Z(M2(Z)) can only contain scalar matrices. But any
scalar matrix commutes with any other matrix:
(

a 0
0 a

) (
x y
z w

)

= a

(
1 0
0 1

) (
x y
z w

)

= a

(
x y
z w

) (
1 0
0 1

)

=

(
x y
z w

)

a

(
1 0
0 1

)

=

(
x y
z w

) (
a 0
0 a

)

.

So

Z(M2(Z)) =

{(
a 0
0 a

)

| a ∈ R

}

.

Remark: This observation remains true Mn(Z), and also holds in Mn(Q), Mn(R), Mn(C)
and in fact any Mn(R) where R is a commutative ring. The center of Mn(R) where R
is a noncommutative ring is more complicated and depends on R as well.

6. (10 pts) Let Zn be the ring as in Example 24.2. Prove that k ∈ Zn is a zero divisor if and
only if gcd(k, n) 6= 1. Conclude that Zp is an integral domain.

Since Zn is a commutative ring, we don’t have to worry about which side we multiply on
to get 0.

Suppose gcd(k, n) = 1. Let m ∈ Zn be such that km = 0, that is n|km. By Lemma 13.1,
n|m, so m = 0. That is k is not a zero divisor.

Conversely, suppose gcd(k, n) = d 6= 1. If d = n, then n|k, so k = 0, which is usually
not considered a zero divisor, so the statement was sloppy, it would have been better to
say k ∈ Zn is a zero divisor or 0 iff gcd(k, n) 6= 1. (Thanks to Golnar for noticing this.)
Otherwise d < n. Let a = k/d and b = n/d. Since 1 < d, b < n, so b 6= 0. Now

kb = kb =
(

k
n

d

)

=

(
k

d
n

)

= an = 0,

so k is indeed a zero divisor.

Remark: In your homework (12.21), you proved that Z(n) = {k|k ∈ Z and gcd(k, n) = 1}
is a group under multiplication. So every such k has an inverse in Z(n) ⊆ Zn. But an
invertible element of a ring cannot be a zero divisor. For let R be a ring and x, y ∈ R, where
x is invertible. If xy = 0, then y = (x−1x)y = x−1(xy) = 0. So this could also serve as the
proof of the first half.

7. (15 pts) Let k1, k2, . . . , kn ∈ Z∗ = Z\{0}. Define the greatest common divisor of k1, k2, . . . , kn

as the number d ∈ Z+ such that
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1. d|ki for all 1 ≤ i ≤ n,
2. if c|ki for all 1 ≤ i ≤ n, then c|d.

Denote this by gcd(k1, k2, . . . , kn).
Prove that such a number exists, is unique, and is an integer linear combination of

k1, k2, . . . , kn. (Hint: you don’t have to do this from scratch, you may use what you know
about the greatest common divisor of two integers.)

Let

d2 = gcd(k1, k2)

d3 = gcd(d2, k3)

...

dn = gcd(dn−1, kn)

Now dn is clearly a positive integer and dn|dn−1|dn−2| · · · |d2, so dn|ki for 1 ≤ i ≤ n. Since d1

is a linear combination of k1 and k2, d3 is a linear combination of k1, k2, k3, and so on. By
induction, dn is a linear combination of k1, k2, . . . , kn.

Suppose c|ki for all 1 ≤ i ≤ n. Then c divides any linear combination of the k’s, so in
particular, c|dn. Hence d = dn is a greatest common divisor of k1, k2, . . . , kn.

Now suppose d′ is also a greatest common divisor of k1, k2, . . . , kn. Then by property 2,
d|d′ and d′|d, and since they are both positive, d = d′.

Remark: You can also prove this by the same argument we first gave for the existence
of the gcd of two nonzero integers. You could do it using the Euclidean algorithm too, but
the notation would be messy. The common mistake among those that gave a similar proof
as above was to say that since the gcd of two numbers is unique, therefore by following the
above recursive algorithm, the gcd of n numbers is also unique. This is not logically sound.
Surely, the algorithm will yield a unique number, which turns out to be a gcd. But how do
you know that someone else can’t come up with a different algorithm that yields a different
gcd of the n numbers?

8. (5 pts each) Let α : G → H be a group homomorphism with K = ker(α). Let N be a normal
subgroup of G such that N ⊆ K. Define θ : G/N → H as

θ(Ng) = α(g).

(a) Prove that θ is well-defined.

Let x, y ∈ G. Suppose Nx = Ny. Then x−1y ∈ N ⊆ K, so

α(x−1y) = eh =⇒ α(x)−1α(y) = eH =⇒ α(x) = α(y) =⇒ θ(Nx) = θ(Ny).

So θ is well-defined.

Remark: θ is of course also a homomorphism, but you were not asked to prove this.

(b) Let π : G → G/N be the canonical projection (π(g) = Ng). Show that α = θ ◦π. When
this happens, we say α factors through G/N .

First notice that θ ◦π : G → H, so the domains and the codomains match. Now for any
g ∈ G,

θ ◦ π(g) = θ(Ng) = α(g).

So θ ◦ π = α.
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9. (5 pts each) Extra credit problem. Let R be a ring.
(a) Prove that (a + b)(a − b) = a2 − b2 for all a, b ∈ R iff R is commutative.

First, notice (a + b)(a − b) = a2 + ba − ab − b2. Now for all a, b ∈ R,

a2 + ba − ab − b2 = a2 − b2 ⇐⇒ ba − ab = 0 ⇐⇒ ba = ab.

The latter is the definition of commutative ring, so R is commutative iff (a+ b)(a− b) =
a2 − b2 for all a, b ∈ R.

(b) Prove that (a + b)2 = a2 + 2ab + b2 for all a, b ∈ R iff R is commutative.

First, notice (a + b)2 = (a + b)(a + b) = a2 + ba + ab + b2. Now for all a, b ∈ R,

a2 + ba + ab + b2 = a2 + 2ab + b2 ⇐⇒ ba + ab = ab + ab ⇐⇒ ba = ab.

The latter is the definition of commutative ring, so R is commutative iff (a + b)2 =
a2 + 2ab + b2 for all a, b ∈ R.

Remark: 2ab in the above expression doesn’t mean multiply 2 by a then by b. For that
matter, the ring may not have an element 2 = 1 + 1. But 2ab always makes sense as
ab + ab.

10. (5 pts each) Extra credit problem. Let m, n ∈ Z be relatively prime.
(a) Let and a, b ∈ Z. Show that there exists x ∈ Z such that

x ≡ a mod m

x ≡ b mod n.

So we are looking for x such that x = sm + a = tn + b for some s, t ∈ Z. Hence
sm− tn = b− a. We know there exist q, r ∈ Z such that qm + rn = 1. Let s = (b− a)q
and t = (a − b)r. Then

sm − nt = (b − a)qm − (a − b)rn = (b − a)(qm + rn) = b − a =⇒ sm + a = tn + b.

Now let x = sm + a = tn + b.

(b) Now suppose that 0 ≤ a < m and 0 ≤ b < n. Show that there exists a unique
0 ≤ x < mn such that

x ≡ a mod m

x ≡ b mod n.

Do the same thing as in part (a) to come up with y = sm + a = tn + b. Now use the
Division Algorithm to write y = z(mn) + x with x, z ∈ Z and 0 ≤ x < mn. This x
clearly satisfies the requirements.
Suppose 0 ≤ x′ < mn also satisfies the congruences. Then −mn < x − x′ < mn.
Also, m|x − x′ and n|x − x′ and hence lcm(m, n)|x − x′. But gcd(m, n) = 1 implies
lcm(m, n) = mn, so mn|x − x′, and therefore x − x′ = 0. That is x = x′.

Remark: This is a special case of the Chinese Remainder Theorem.

11. (5 pts each) Extra credit problem. Let R be a ring with at least two elements. Suppose
that for any nonzero r ∈ R there exists a unique s ∈ R such that rsr = r. Prove the following
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(a) R has no zero divisors.

Let r, x ∈ R with r 6= 0. Suppose rx = 0 or xr = 0. In either case, find the s as above
and write

r = rsr = rsr − rxr
︸︷︷︸

=0

= r(s − x)r.

But s was supposed to be the unique element in R which satisfies rsr = r, so s− x = s
and hence x = 0. So r cannot be a zero divisor. We can do this for any r 6= 0, so R has
no zero divisors.

(b) srs = s.

rs = (rsr)s = r(srs) =⇒ rs − r(srs) = 0 =⇒ r(s − srs) = 0.

Since r 6= 0 and r cannot be a zero divisor, s − srs = 0 and hence s = srs.

(c) R has a multiplicative identity.

Let x ∈ R be any element. Look at

rx = rsrx =⇒ rx − rsrx = 0 =⇒ r(x − srx) = 0.

Since r 6= 0 cannot be a zero divisor, x − srx = 0 and x = srx. On the other side,

xs = xsrs =⇒ xs − xsrs = 0 =⇒ (x − xsr)s = 0.

Since s 6= 0 cannot be a zero divisor, x − xsr = 0 and x = xsr. So sr works as both a
left and a right identity. So we can denote sr by 1.

(d) Every nonzero element of R has a multiplicative inverse, that is R is a division ring.

Let x ∈ R be any nonzero element. We know there exists y ∈ R such that xyx = x.
Hence

xyx = x =⇒ xyx − x = 0 =⇒ x(yx − 1) = 0.

Since x cannot be a zero divisor yx − 1 = 0 and yx = 1. Similarly,

xyx = x =⇒ xyx − x = 0 =⇒ (xy − 1)x = 0.

Since x cannot be a zero divisor yx−1 = 0 and yx = 1. So y is a two-sided inverse of x.

Remark: If we had know at the beginning that R contains a 1 and cancelation lkaws
hold for left and right multiplication, the statements would have been trivial to prove.
But neither of these is required for a ring. In fact, since the existence of cancelation
laws is equivalent to not having zero divisors, these are exactly what had to be proved.
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