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MATH 3134 EXAM 1 SOLUTIONS
Feb 18, 2005

(2 pts) Spell correctly the singular of “vertices.”
Vertex.

1. (10 pts) Let G; and Gy be directed or undirected simple graphs and f be an isomorphism

2.

from G; to G2. Let E; be the set of edges of G;. For edges a and b, say that b follows a if
a, b is a path. Show that there exists a one-to-one correspondence g : 1 — E5 such that for
a,b € Eq, g(b) follows g(a) if and only if b follows a. (Note the converse is false.)

For an edge e denote the starting vertex by T'(e) and the ending vertex by H(e) (T and
H stand for the tail and head of an arrow).

We will first define a map g : £; — Fj as follows. Let e be an edge in G1. Since f is
an isomorphism, we know there is an edge ¢’ in Go from f(7T'(e)) to f(H(e)). Let g(e) = €.
Observe that T'(g(e)) = T(¢/) = f(T(e)) and H(g(e)) = H(e') = H(T(e)).

Now, we will define a map h : Es — E;. Let ¢/ be an edge in Gs. Since f~! is an isomor-
phism from G2 to G (remember the proof of 3.1.28), there is an edge €” from f~1(T'(¢')) to
7 H()). Let h(e) = ¢,

If e € Eq, then g(e) is an edge from f(T'(e)) to f(H(e)) in Go, and h(g(e)) is an edge
from f~1(f(T(e))) = T(e) to f~1(f(H(e))) = H(e) in G;. But there is exactly one edge
from T'(e) to H(e) and that is e. So h(g(e)) = e for all e € E;. By a similar argument,
g(h(€e)) = € for all ¢ € E5. Hence h is the inverse of g, and then g must be a one-to-one
correspondence.

Let a,b € E;. Notice that b follows a iff T'(b) = H(a). Since f is one-to-one, T'(b) = H(a)
iff f(T'(b)) = f(H(a)). This happens iff T'(g(b)) = H(g(a)) iff g(b) follows g(a).

Remarks:

e Many of you like to claim in your homework that an isomorphism f from G; to Go
is a one-to-one correspondence of the vertices and the edges. This is false because by
definition f is a map V3 — V5 and it does not map F; — FE5. But if you have f, you
can construct a one-to-one correspondence g : F4 — FEs by the above argument.

e You have already done part of this exercise when you showed that a graph isomorphism
sends a path to a path in the homework assigned on 2/2. If you did that problem right,
you constructed g and showed that g(b) follows g(a) if b follows a, although you most
likely did not put it in these same terms.

e Why is the converse false?

(a) (3 pts) Let f be a map from the set S to the set T'. Define what it means for f to be
onto.

f is onto if f(S) = T. Alternately, f is onto if for all t € T there is an s € S such that
f(s) =t.

(b) (3 pts) Let f be a map from the set S to the set 7. Define what it means for f to be
one-to-one.

f is one-to-one if for all z,y € S such that © # y, f(z) # f(y). Alternately, f is
one-to-one if for all z,y € S, f(x) = f(y) implies x = y.



Remark: Saying that f assigns to every element of S a unique element of T" is merely
the definition of a map and does not characterize one-to-one maps.

(10 pts) Let f : A — B and g : B — C be one-to-one correspondences. Prove that go f
is a one-to-one correspondence.

So f and g are both one-to-one and onto, and we need to show the same for g o f.

Let z,y € A such that x # y. Then f(z) # f(y) because f is one-to-one and g(f(z)) #
9(f(y)) because g is one-to-one. So g o f is one-to-one.

As f is onto, f(A) = B. Since g is onto, g(f(A)) = g(B) = C, which shows that go f
is onto.

(7 pts) Let S be a set of sets and ~ the following relation on S. For A, B € S, A ~ B iff
there is a one-to-one correspondence f : A — B. Prove that ~ is an equivalence relation.
(You may use the theorem from the book which states a one-to-one correspondence has
an inverse, and the inverse is also a one-to-one correspondence.)

Let A,B,C € S.

Reflexivity: Since the identity map ig : A — A is obviously one-to-one and onto (it’s
its own inverse), A ~ A.

Symmetry: If A ~ B there exists a one-to-one correspondence f : A — B. By Theorem
2.9, f~!: B — A exists and is a one-to-one correspondence. Hence B ~ A.
Transitivity: If A ~ B and B ~ C, then there exist one-to-one correspondences f :
A— Bandg: B — C. By part (¢), go f: A— C is a one-to-one correspondence. So
A~C.

(5 pts) Let G be an undirected graph. State a theorem that gives a necessary and
sufficient condition for the existence of an Fulerian circuit in G in terms of the degrees
of the vertices. You don’t need to prove the theorem.

G has an Eulerian circuit if and only if G is connected up to isolated vertices and the
degree of each vertex is even.

(10 pts) Let G be an undirected graph. Recall that the line graph L(G) of G is the
undirected graph whose vertices correspond to the edges of GG, and two vertices are
adjacent if and only if the corresponding edges in G share an endpoint.

Prove that G has an Eulerian circuit if and only if L(G) has a Hamiltonian cycle.
Conclude that if G has an Eulerian circuit then L(G) is connected.

Say two edges e; and eg are neighboring if they share an endpoint. Let v; and ve be
the corresponding vertices in L(G). By definition of L(G), e; and eg are neighboring iff
v1 and vy are adjacent.

Suppose G has an Eulerian circuit P = ejq,eo,...,e,. Let v; be the vertex which
corresponds to e; in L(G). Since P is a path, e; and e;+1 are neighboring, so v; is
adjacent to v;4+1. Since P is a circuit, e, and e; are neighboring, so v, is adjacent to v;.
Hence P = vy, v9,...,0p,v1 is a circuit. As P contains each edge of G exactly once, P
contains each vertex of L(G) exactly once, hence it is a Hamiltonian cycle.

The proof of the converse is very similar. If L(G) has a Hamiltonian cycle P =

v1,V2,...,Un, V1, let e; be the edge in G which corresponds to v;. The adjacency



of the consecutive vertices in P implies that consecutive edges in the sequence P =
e1,€a,...,e, are neighboring and so are e, and e;. Hence P is a circuit. Since P con-
tains each vertex of L(G) exactly once, so P contains each edge of G exactly once, hence
it is an Eulerian circuit.

If G has an Eulerian circuit, then L(G) has a Hamiltonian cycle. We can get from any
vertex to any other by traveling along this cycle, hence L(G) is connected.

Remark: In the line graph problem on the homework, you had to show that if G has an
Eulerian circuit then L(G) does too. This proof involves showing that L(G) is connected.
If you did this right, you must have come up with a very similar argument to the above,
in which you converted a path in G to a path in L(G) just like here.



