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1. (5 pts each)
(a) Show that

−1 +
√
3i

2
is a cube root of 1 (meaning that its cube is equal to 1).
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√
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2
is a cube root of 1.

(b) Find two distinct square roots of i.

Let α = x+ yi. For α to be a square root of i, it has to satisfy

i = α2 = (x+ yi)2 = x2 − y2 + 2xyi

Hence x2 − y2 = 0 and 2xy = 1. First,

x2 − y2 = 0 =⇒ x2 = y2 =⇒ y = ±x.

If y = −x

1 = 2xy = −2x2 =⇒ x2 = −1

2
which has no real solution for x. If y = x

1 = 2xy = 2x2 =⇒ x2 =
1

2
=⇒ x = ± 1√

2
=⇒ y = ± 1√

2
.

This gives

α = ±1 + i√
2

as the two square roots of i.

2. (10 pts) Show that in the definition of a vector space, the additive inverse condition can be
replaced with the condition that 0v = 0 for all v ∈ V . Here 0 on the left side is the number
0, and the 0 on the right side is the additive identity of V . (The phrase “a condition can
be replaced” in a definition means that the collection of objects satisfying the definition is
unchanged if the original condition is replaced with the new condition.) Hint: show that if
V is a vector space that satisfies the original definition we gave in class then it also satisfies
0v = 0 for all v ∈ V ; and conversely, if V is a vector space that satisfies the new definition,
then every v ∈ V must have an additive inverse.

Call V an old vector space if it satisfies the original definition of a vector space we gave in
a class and a new vector space if it satisfies the same axioms except instead of the existence



of additive inverses we have 0v = 0 for all v ∈ V . We are supposed to show that V is an old
vector space if and only if it is a new vector space.

So suppose V is an old vector space. Then Proposition 1.29 shows that V also satisfies
0v = 0 for all v ∈ V , so V is also a new vector space.

Now suppose V is a new vector space. Let v ∈ V . We will show that v has an additive
inverse in V . Let w = (−1)v. Since V is closed under scalar multiplication, w ∈ V . In fact,
w is an additive inverse to v:

v + w = v + (−1)v

= 1v + (−1)v because v = 1v

= (1 + (−1))v by distributivity

= 0v

= 0 since V is a new vector space

Similarly, w + v = 0. Therefore every v ∈ V has an additive inverse, and hence V is an old
vector space.

3. (5 pts each) Let V be a vector space and v any vector in V .
(a) Prove that v has a unique additive inverse in V .

See Proposition 1.26 in your textbook.

(b) Prove that (−1)v = −v.

See Proposition 1.31 in your textbook.

4. (10 pts) Let V = R
∞ be the vector space of real valued sequences over the field R. Let a ∈ R

and

U = {(x1, x2, . . .) ∈ V | lim
n→∞

xn = a}.

Show that U is a subspace of V if and only if a = 0. (Hint: you may use what you learned
about limits of sequences in calculus and/or precalculus.)

This is similar to Example 1.35(a). First, suppose a 6= 0. Notice that the 0 sequence
(0, 0, . . .) has limit 0, so if a 6= 0, then this sequence is not in U and hence U cannot be a
subspace.

Now suppose a = 0. Then (0, 0, . . .) ∈ U , so U is nonempty. Suppose (x1, x2, . . .) and
(y1, y2, . . .) are in U . Then limn→∞ xn = limn→∞ yn = 0. By the usual properties of limits,

lim
n→∞

(xn + yn) = lim
n→∞

xn + lim
n→∞

yn = 0 + 0 = 0.

Hence

(x1, x2, . . .) + (y1, y2, . . .) = (x1 + y1, x2 + y2, . . .) ∈ U.

Now, let (x1, x2, . . .) ∈ U and α ∈ R. Then

lim
n→∞

(αxn) = α lim
n→∞

xn = α0 = 0.

Hence

α(x1, x2, . . .) = (αx1, αx2, . . .) ∈ U.

Therefore U is a subspace.



5. (10 pts) Extra credit problem. Let V be a vector space and {Uα}α∈I a collection of
(possibly infinitely many) subspaces of V where I is some indexing set. Define the sum of
the Uα as

∑

α∈I
Uα =

{
∑

α∈I
uα | uα ∈ Uα ∀α ∈ I and uα = 0 for all but finitely many α

}

.

Prove that
∑

α∈I Uα is the smallest subspace of V which contains all of the Uα. (Hint:
follow the proof we gave in class for the finite case and think carefully about what to do
differently.)

This can be shown much the same way as Proposition 1.39. First, notice that since 0 ∈ Uα

for all α ∈ I,

0 =
∑

α∈I
0 ∈

∑

α∈I
Uα.

Now, suppose v, w ∈ U . Then there exist some finite subset A of I and vectors vα ∈ Uα for
α ∈ A such that v =

∑

α∈A vα. Similarly, there exist some finite subset B of I and vectors
wα ∈ Uα for α ∈ B such that w =

∑

α∈B wα. Hence

v + w =
∑

α∈A
vα +

∑

α∈B
wα =

∑

α∈A\B
vα +

∑

α∈B\A
wα +

∑

α∈A∩B
(vα + wα) ∈

∑

α∈I
Uα

since the sum on the right hand side consists of finitely many elements from the various Uα.
If if v ∈ U and λ ∈ F , then v =

∑

α∈A vα for some finite subset A of I and vectors vα ∈ Uα.
Hence

λv = λ
∑

α∈A
vα =

∑

α∈A
λvα
︸︷︷︸

∈Uα

∈
∑

α∈I
Uα.

Therefore
∑

α∈I Uα is a subspace of V .
Now, we need to show

∑

α∈I Uα is the smallest susbspace that contains all of the Uα. Let
W be any subspace of V which contains all of the Uα. Let v be any vector in

∑

α∈I Uα.
Then v =

∑

α∈A vα for some finite subset A of I and vectors vα ∈ Uα. Since uα ∈ W for all
α ∈ A, and W is closed under addition, v ∈ W . As this is true for any v ∈∑

α∈I Uα, it must
be that

∑

α∈I Uα ⊆ W .


