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1. (10 pts) Let V be a vector space. Is the operation of addition on the subspaces of V
associative? In other words, if U1, U2, U3 are subspaces of V , is

(U1 + U2) + U3 = U1 + (U2 + U3)?

(Hint: Subspaces are sets. Think carefully about what it means to show that two sets are
equal.)

We will prove it is. Let U1, U2, U3 be subspaces of V . To prove (U1+U2)+U3 = U1+(U2+
U3), we need to show (U1 + U2) + U3 ⊆ U1 + (U2 + U3) and U1 + (U2 + U3) ⊆ (U1 + U2) + U3.
Let v ∈ (U1 + U2) + U3. Then v = (u1 + u2) + u3 for some u1 ∈ U1, u2 ∈ U2, and u3 ∈ U3.
By associativity of addition on V ,

v = (u1 + u2) + u3 = u1 + (u2 + u3) ∈ U1 + (U2 + U3).

This is true for all v ∈ (U1 + U2) + U3, so (U1 + U2) + U3 ⊆ U1 + (U2 + U3). A symmetric
argument shows U1 + (U2 + U3) ⊆ (U1 + U2) + U3.

2. (10 pts) Suppose U and W are subspaces of the vector space V such that V = U ⊕ W
Suppose also that u1, . . . , um is a basis of U and w1, . . . , wn is a basis of W . Prove that

u1, . . . , um, w1, . . . , wn

is a basis of V .

We will first show that any vector in U+W is a linear combination of the u1, . . . , um, w1, . . . , wn.
Let v ∈ U + W . So v = u + w for some u ∈ U and w ∈ W . Since u1, . . . , um span U and
w1, . . . , wn span W , we can write

u = α1u1 + · · · + αmum

w = β1w1 + · · · + βnwn

for some α1, . . . , αm, β1, . . . , βn ∈ F . Hence

v = α1u1 + · · · + αmum + β1w1 + · · · + βnwn.

Now, to show that u1, . . . , um, w1, . . . , wn is linearly independent, suppose

α1u1 + · · · + αmum + β1w1 + · · ·βnwn = 0.

Then the vector

v = α1u1 + · · · + αmum = −β1w1 − · · · − βnwn

is both in U and W . Since U + W is direct, U ∩ W = {0}. So v = 0. Now, αi = 0 for all i
by the linear independence of u1, . . . , um and βj = 0 for all j by the linear independence of
w1, . . . , wn.

3. (10 pts) Let V be a vector space over the field F . Show that V and L(F, V ) are isomorphic
vector spaces.

For a v ∈ V , define the map Tv : F → V by Tv(α) = αv. It is quite clear that Tv is linear.
Now, define φ : V → L(F, V ) by φ(v) = Tv. To see that φ is linear, note that

Tu+v(α) = α(u + v) = αu + αv = Tu(α) + Tv(α),

and
Tλv(α) = α(λv) = (αλ)v = (λα)v = λ(αv) = λTv(α)



by the usual properties of vector spaces and fields.
We will show φ has an inverse. Define σ : L(F, V ) → V by σ(S) = S(1). If S ∈ L(F, V ),

let v = σ(S) = S(1). Notice that for any α ∈ F ,

S(α) = S(α1) = αS(1) = αv = Tv(α).

Hence S = Tv = φ(v). This shows φ ◦ σ = 1L(F,V ). Now, if v ∈ V , then

σ(φ(v)) = σ(Tv) = Tv(1) = 1v = v.

Hence σ ◦ φ = 1V . Therefore φ is an isomorphism from V to L(F, V ).

4. (10 pts) Prove the Linear Dependence Lemma: If V is a vector space and v1, . . . , vm is a
linearly dependent list of vectors in V , then there exists a 1 ≤ j ≤ m such that
(a) vj ∈ span(v1, . . . , vj−1), and

(b) if vj is removed from v1, . . . , vm then the span of the remaining list equals span(v1, . . . , vm).

(To be clear, note that in (a), if j = 1, v1 ∈ span(∅) means v1 = 0 since the span of the
empty set/list is by definition {0}.)

See Proposition 2.21 in your textbook.

5. (a) (2 pts) Define what a linear map is.

If V and W are vector spaces over the same field F , then a map T : V → W is linear if
it satisfies the following two properties:

Additivity: T (u + v) = T (u) + T (v) for all u, v ∈ V ,

Homegeneity: T (λv) = λT (v) for all λ ∈ F and for all v ∈ V .

(b) (4 pts) Prove a linear map T : V → W is injective if and only if null(T ) = {0}.

See Proposition 3.16 in your textbook.

(c) (4 pts) Give an example of a linear map T : V → V that is injective but not surjective.
Be sure to fully justify your example. (Hint: Is such a map possible if V is finite
dimensional?)

Let V = F∞ over F and let T : V → V be the right shift map, i.e.

T (x1, x2, . . .) = (0, x1, x2, . . .).

We verified in class that T is a linear map. Now, if x = (x1, x2, . . .) and y = (y1, y2, . . .)

T (x) = T (y) =⇒ (0, x1, x2, . . .) = (0, y1, y2, . . .) =⇒ xi = yi ∀i ∈ Z
+.

Hence x = y. So T is injective. But T is clearly not surjective as any sequence whose
first element is nonzero is not in the range.

(d) (10 pts) Prove that Fundamental Theorem of Linear Maps: If V, W are vector spaces,
V is finite dimensional, and T ∈ L(V, W ) then

dim(V ) = dim(null(T )) + dim(range(T )).

See Proposition 3.22 in your textbook.

6. Extra credit problem. Let V be a vector space over some field F and U, W subspaces
of V . In this problem, you will prove that (U + W )/W ∼= U/(U ∩ W ). I will help you by
breaking this down into a few steps.



(a) (3 pts) First, define the map T : U + W → U/(U ∩ W ) by T (u + w) = u + (U ∩ W ).
Notice that while every vector v ∈ U + W can be expressed as u + w for some u ∈ U
and some w ∈ W , this expression is not unique in general. So depending on the choice
you make for u and w, T (v) could potentially give you different results. I.e. T may not
be well-defined. Show that T is in fact well-defined.

Let v ∈ U + W and suppose v = u1 + w1 = u2 + w2 are two different ways of writing v
as an element of U plus an element of W . We need to show that either gives the same
result when applying T to it. That is we want to show u1 + (U ∩ W ) = u2 + (U ∩ W ).
This is so if u1 − u2 ∈ (U ∩ W ), that is u1 − u2 is both in U and in W . It is clear that
u1 − u2 ∈ U . Notice

u1 + w1 = u2 + w2 =⇒ u1 − u2 = w2 − w1 ∈ W.

So u1 − u2 ∈ U ∩ W and hence u1 + (U ∩ W ) = u2 + (U ∩ W ).

(b) (4 pts) Prove that T is a linear map.

Let v1, v2 ∈ U + W . Then v1 = u1 + w1 and v2 = u2 + w2 for some u1, u2 ∈ U and
w1, w2 ∈ W . Notice that v1 + v2 = (u1 + u2) + (w1 + w2) where u1 + u2 ∈ U and
w1 + w2 ∈ W . So

T (v1 + v2) = u1 + u2 + (U ∩ W ) = u1 + (U ∩ W ) + u2 + (U ∩ W ) = T (v1) + T (v2).

Now, let v ∈ U + W and λ ∈ F . Then v = u + w and λv = λu + λw where λu ∈ U and
λw ∈ W . So

T (λv) = λu + (U ∩ W ) = λ(u + (U ∩ W )) = λT (v).

(c) (2 pts) Prove that T is surjective.

Let u + (U ∩W ) ∈ U/(U ∩W ). Then u = u + 0 ∈ U + W and T (u) = u + (U ∩W ). So
any element of U/(U ∩ W ) is in the range of T .

(d) (4 pts) Prove that null(T ) = W .

First, if w ∈ W then w = 0 + w ∈ U + W , so T (w) = 0 + (U ∩ W ). This shows
W ⊆ null(T ). Now, suppose v ∈ null(T ). Since v ∈ U +W , v = u+w. That v ∈ null(T )
means T (v) = 0 + (U ∩ W ). But T (v) = u + (U ∩ W ) as well. Hence

u + (U ∩ W ) = 0 + (U ∩ W ) =⇒ u − 0 ∈ (U ∩ W ) =⇒ u ∈ W.

Hence v = u + w ∈ W . This shows null(T ) ⊆ W . So null(T ) = W .

(e) (2 pts) Conclude that the map T̃ : (U + W )/W → U/(U ∩ W ) defined by

T̃ ((u + w) + W ) = u + (U ∩ W )

is well-defined and is an isomorphism. Hence (U + W )/W ∼= U/(U ∩ W ).

To see that T̃ is well defined, we need to check that if v1, v2 ∈ U + W such that
v1 + W = v2 + W then T̃ (v1 + W ) = T̃ (v2 + W ). First, notice that for any v ∈ U + W ,

T̃ (v + W ) = T (v). If v1 + W = v2 + W then v1 − v2 ∈ W = null(T ), so

T̃ (v1 + W ) − T̃ (v2 + W ) = T (v1) − T (v2) = T (v1 − v2) = 0 + (U ∩ W ).

Hence T̃ (v1 + W ) = T̃ (v2 + W ).

By Proposition 3.91 range(T̃ ) = range(T ) = W and hence T̃ is an isomorphism (U +
W )/W → U/(U ∩ W ).


