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1. (10 pts) Write

√

3 +
√

7 −
√

8 − 2
√

7 as the quotient of two integers.

Note that

8 − 2
√

7 = 1 − 2
√

7 + 7 = (1 −
√

7)2.

Hence
√

8 − 2
√

7 =

√

(1 −
√

7)2 = |1 −
√

7| =
√

7 − 1.

(Why do we need the absolute value?) So
√

3 +
√

7 −
√

8 − 2
√

7 =

√

3 +
√

7 − (
√

7 − 1) =
√

4 = 2 =
2

1
.

Remark: Obviously, doing the computation on your calculator and getting 2 does not
constitute a valid mathematical argument. Calculators are in general not very useful for
proving that a number is rational, since they represent all numbers as finite decimals. To
a calculator, any number is rational, hence a quotient of two integers. If you believe your
calculator can do such proofs, try using it to prove that

√
2 is a quotient of two integers.

2. (10 pts) Let n > 1 be an integer and p a prime. Show that n
√

p is irrational. (Hint: Modify

the standard proof that
√

2 is irrational.)

Suppose s, t ∈ Z
+ such that n

√
p = s/t and s and t are relatively prime, i.e. the fraction is

fully reduced. Then
sn

tn
= p =⇒ sn = ptn

The RHS is divisible by p, so the LHS has to be divisible by p. Since p is prime, this means
p|s. Hence s = pk for some k ∈ Z. Then

(pk)n = ptn =⇒ pn−1kn = tn

Since n − 1 ≥ 1, the LHS is divisible by p. So the RHS is divisible by p. Hence p|t. But s
and t were supposed to be relatively prime, so they can’t have p as a common factor. This
contradiction proves that our initial assumption must have been false and n

√
p cannot be

written as a quotient of two integers.

3. (10 pts) Consider those reciprocals of primes that have simple-periodic decimal representa-
tions. Using the theorems we proved in class (and in your textbook), prove that of these
(a) There is exactly 1 with period 1. What is it?

We are looking for a number p such that 1/p = 0.d where d is some digit. One of the
theorems we proved in class says that such a number 0.d is of the form d

101
−1

= d
9
. So

1

p
=

d

9
=⇒ 9 = dp

Since the only prime factor of 9 is 3, p = 3 and hence d = 3. Indeed, 1

3
= 0.3 has period

1.



(b) There is exactly 1 with period 2. What is it?

We are looking for a number p such that 1/p = 0.d1d2 where d1, d2 are some digits. Using

the same theorem as in part (a), such a number 0.d1d2 is of the form d1d2

102
−1

= d1d2

99
. So

1

p
=

d1d2

99
=⇒ 99 = p(d1d2)

Since 99 = 32 ·11, p could be 3 or 11. But we already saw that 1

3
has period 1, so p = 11.

Indeed, 1

11
= 0.09 has period 2.

Note that the reason p = 3 shows up here as a possibility again is that the the exponent
of 10 in the denominator need not be the period. If that exponent is n, then the first
n digits following the decimal point must repeat, but those first n digits could consist
of several periods. E.g. 1

3
= 0.33 = 33

99
. This is why we had to check that 11 is indeed a

solution to the problem.

4. (10 pts) Suppose a
b

is a rational number in lowest terms with b > 0. Prove that a
b

is
represented by a decimal which is either finite or infinite periodic of period at most b − 1.

This proof is in your textbook in Section 2.1.2.

5. (20 pts)
(a) The numbers 0.00123 and 0.00813 are infinite periodic decimals. Therefore they must

be rational numbers. Write each of them as m/n for some m, n integers and simplify
these fractions.

0.00123 = 123

(

1

100000
+

1

1000002
+

1

1000003
+ · · ·

)

= 123
1

100000

1

1 − 1

100000

= 123
1

100000 − 1
=

123

99999
=

1

813
.

Similarly,

0.00813 =
813

99999
=

1

123
.

(b) Stare at the fractions you got in part (a). What connection do you discover? Explain
why this connection holds.

Notice
123

99999
=

1

813
=⇒ 123 · 813 = 99999.

We proved a theorem in class that said

0.d1d2 . . . dp =
m

10p − 1

where m = d1d2 . . . dp. If m|10p − 1, then this last fraction simplifies as 1/n where

n = 10p
−1

m
. Of course, then it is also true that

1

m
=

n

10p − 1

and the latter fraction has infinite decimal expansion in which the digits of n keep
repeating, padded with enough 0s in front of them to make the repeating part p digits
long. This is exactly what happens in part (a).



(c) Explain how you can use what you discovered to construct another example like in part
(a). (You might as well construct an example.)

We need to find three positive integers m, n, p such that mn = 10p −1. Ideally, we want
m and n to consist of digits that are not periodic, or both to have less than p digits, so
it is really apparent in the reciprocals that it is the digits of m and n that repeat.
Let’s try p = 1. Then 10p − 1 = 9 = 32. One way to factor 9 is 9 = 1 · 9. Indeed

0.9 = 1 =
1

1
, 0.1 =

1

9
.

Of course, writing the reciprocal of 1 as 0.9 is strange, so this example is not ideal.
Let’s try p = 2. Then 10p − 1 = 99 = 32 · 11. One way to factor 99 is 99 = 9 · 11. Indeed

0.09 =
1

11
, 0.11 =

1

9
.

The problem is that 0.11 = 0.111111 . . . and it’s difficult to spot 11 as the repeating
number in that. So this example is not ideal either. The problem is the same with the
factoring 99 = 3 · 33. (Try it!)
Let’s try p = 3. Then 10p − 1 = 999 = 33 · 37. One way to factor 999 is 999 = 27 · 37.
Indeed

0.027 =
1

37
, 0.037 =

1

27
.

Finally, we have a good example. You can try other factorings of 999. You’ll find they
don’t give very good example for the same reason factoring 99 didn’t give very good
examples.

6. (5 pts) Extra credit problem. We proved in class that if x < y are real numbers then there
exists a rational number r and an irrational number s such that x < r < y and x < s < y.

In particular, if x < y are two rational numbers, then there is an irrational number s such
that x < s < y. Also, if a < b are two irrational numbers, then there is a rational number
r such that a < r < b. That is between any two rational numbers, there is at least one
irrational and between any two irrational numbers, there is at least one rational. Hence the
rational and the irrationals alternate on the real line. This shows there are exactly as many
rational as irrationals.

Find the mistake in the above argument and explain why it is a mistake.

The mistake is that the argument is that it fails to explain how being able to insert a
rational between any two irrationals and an irrational between any two rationals is enough
to construct an alternating sequence of rationals and irrationals. How would you start
constructing such a sequence? If the rationals (or the irrationals) could be listed in increasing
order on the real line, the argument would indeed give a way to fill in the holes among them
with numbers of the opposite kind and the alternation would follow. But such a listing is
clearly impossible.

You could instead start with any two rationals and insert an irrational between them. If
there is no other irrational between them, we have part of the desired alternating sequence.
If there is another irrational between the rationals, then take these two irrationals and find
a rational between them. If this is the only rational between them, then we have part of
the alternating sequence we want. If there is another, find an irrational between those two
rationals. And so on. The problem is that this process never finishes, so it never actually
constructs part of the alternating sequence which the argument claims exists.

7. (5 pts each) Extra credit problem.



(a) Prove that
√

5−
√

3 is algebraic by finding a polynomial p with integer coefficients such
that p(

√
5 −

√
3) = 0.

Let a =
√

5 −
√

3. Notice that

a2 = 5 − 2
√

15 + 3 = 8 − 2
√

15

a4 = (a2)2 = (8 − 2
√

15)2 = 64 − 32
√

15 + 60 = 124 − 32
√

15

Therefore a4 − 16a2 will have no
√

15 left in it. Indeed

a4 − 16a2 = 124 − 32
√

15 − 16(8 − 2
√

15) = −4.

So a4 − 16a2 + 4 = 0, i.e. a is a root of p(x) = x4 − 16x2 + 4.

Alternately, notice that

a2 = 8 − 2
√

15 =⇒ 8 − a2 = 2
√

15 =⇒ (8 − a2)2 = 60

=⇒ 64 − 16a2 + a4 − 60 = 0 =⇒ a4 − 16a2 + 4 = 0

gives the same polynomial.

(b) Prove that 1 + 3
√

2 is algebraic by finding a polynomial p with integer coefficients such
that p(1 + 3

√
2) = 0.

Let a = 1 + 3
√

2. Notice that

a2 = 1 + 2
3
√

2 +
3
√

2
2

a3 = 1 + 3
3
√

2 + 3
3
√

2
2
+ 2 = 3 + 3

3
√

2 + 3
3
√

2
2

Therefore

a3 − 3a2 = −3
3
√

2

a3 − 3a2 + 3a = 3

a3 − 3a2 + 3a − 3 = 0

So a is a root of p(x) = x3 − 3x2 + 3x − 3.

Another way to discover this polynomial is to notice that

(a − 1)3 =
3
√

2
3

= 2 =⇒
(a − 1)3 − 2 = a3 − 3a2 + 3a − 1 − 2 = a3 − 3a2 + 3a − 3 = 0.


