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1. (10 pts) Prove that if z1, z2, and z3 are complex numbers on the unit circle such that
z1 + z2 + z3 = 0, then z1, z2, and z3 are vertices of an equilateral triangle. (Hint: Do this in
the special case z1 = 1 first. Then in the general case, divide the equation by z1.)

First, assume that z1 = 1. Let z2 = x2 + y2i and z3 = x3 + y3i. Then

0 = z1 + z2 + z3 = 1 + x2 + y2i + x3 + y3i = (1 + x2 + x3) + (y2 + y3)i

implies 1 + x2 + x3 = 0 and y2 + y3 = 0. From the latter, y3 = −y2. Since z2 and z3 are on
the unit circle
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If x3 = −x2, then 1 + x2 + x3 = 1 6= 0, so we can rule out this case. Hence x3 = x2.
Substitute this into 1 + x2 + x3 = 0 to get
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So 1, z2, z3 are on the unit circle at 0◦, 120◦, and 240◦. Hence they are the vertices of an
equilateral triangle.

For the general case, let w2 = z2/z1 and w3 = z3/z1 (we know z1 6= 0 since it’s on the unit
circle). Notice that |w2| = |z2|/|z1| = 1, so w2 is also on the unit circle. The same goes for
w3. Now

1 + w2 + w3 = 1 +
z2

z1

+
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z1

=
z1 + z2 + z3
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= 0

As we already showed, this implies w2 and w3 are at 120◦ and 240◦. Therefore z2 = w2z1

and z3 = w3z1 are 120◦ and 240◦ away from z1 on the unit circle. Hence z1, z2, and z3 are
again equally spaced on the unit circle and form the vertices of an equilateral triangle.

Note that there are many possible solutions, some slicker and the shorter than the above.
I chose this because it’s very elementary and does not assume too much familiarity with the
complex numbers beyond the basic definitions. If you want a worthy challenge, you may try
to come up with a shorter proof, using, for example, polar coordinates.

2. (10 pts) Let A and B be finite sets. Suppose A contains x elements and B contains y
elements. How many different functions are there from A to B?

Let f : A → B. If a ∈ A, then f(a) ∈ B, so there are y possible choices for what it can
be. This is true for each of the x elements in A. We have y choices for each, so we have yx



choices for the whole function. Each choice will give a different function since at least one
element in A will have a different image.

Another way to look at this problem is to use the defition of function. A function f :
A → B is a subset of A × B such that each element a ∈ A appears exactly once as the first
coordinate of an element in f . That is

f = {(a1, b1), (a2, b2), . . . , (ax, bx)}
where a1, a2, . . . , ax is a list of the elements of A. Each bi can be any of the y elements of B,
so there are y choices for each. This gives yx choices for b1, b2, . . . , bx. Each of these choices
gives a different subset of A×B and therefore a different function. So there are yx different
functions.

3. (10 pts) Let S be a finite set with n elements. How many binary operations are there on S?

A binary operation is a function S × S → S. Since S × S has n2 elements, the result of

problem 2, says that there are nn
2

different functions S × S → S.

4. (12 pts)
(a) What is a countable set? State the definition.

A set S is countable if it is finite or has the same cardinality as N, i.e. there exists a
one-to-one correspondence f : N → S.

Remark: Instead of N, you can just as well use Z in the above definition.

(b) Prove that the open interval (0, 1) is not countable. (Hint: Cantor diagonalization.)

This proof is in Section 2.1.4 of your textbook.

5. (6 pts each)
(a) Let z, w ∈ C. Prove that

z + w = z + w

and

zw = z w.

Let z = x + yi and w = s + ti. Then

z + w = x + yi + s + ti = x − yi + s − ti

= x + s − (y + t)i = x + s + (y + t)i = z + w.

Also

z w = (x + yi)(s + ti) = (x − yi)(s − ti) = xs − yt − (xt + ys)i

zw = (x + yi)(s + ti) = xs − yt + (xt + ys)i = xs − yt − (xt + ys)i.

Hence zw = z w.

(b) Let z ∈ C. Use the result from part (a) to show that if n ∈ Z
≥0 then

zn = zn.

(Hint: induction starting at n = 0 is a good way to do this.)



Here is the inductive argument. If n = 0, then z0 = 1 and z0 = 1, so the statement
holds. Assume that it holds for some n ∈ Z

≥0. Then

zn+1 = znz = znz = znz = zn+1,

where the second equality is by the inductive hypothesis and the third is by z w = zw
proved in part (a).

(c) Let p(x) = anxn + an−1x
n−1 + · · · + a1x + a0 be a polynomial with real cofficients (i.e.

a0, . . . an ∈ R). Prove that if z ∈ C is a root of this polynomial, then so is z. (Hint:

show that p(z) = p(z).)

Notice that ai = ai since ai ∈ R. So

p(z) = anzn + an−1z
n−1 + · · · + a1z + a0

= an zn + an−1 zn−1 + · · · + a1 z + a0 by zn = zn and ai = ai

= anzn + an−1zn−1 + · · · + a1z + a0 by z w = zw

= anzn + an−1zn−1 + · · · + a1z + a0 by z + w = z + w

= p(z).

If z is a root of p then p(z) = 0. Hence p(z) = p(z) = 0 = 0. This shows z is also a root.

6. Extra credit problem.

(a) (10 pts) Let f, g : S → T and h : T → U . Prove that if h is one-to-one and h ◦ f = h ◦ g
then f = g. (Recall that f = g means that f and g have the same domain and codomain
and f(x) = g(x) for all x in the common domain of f and g.)

Since f and g already have the same domain and codomain, all we need to show is that
f(x) = g(x) for all x ∈ S. Let x ∈ S. We know h ◦ f = h ◦ g, so h(f(x)) = h(g(x)). But
h is one-to-one, so this implies f(x) = g(x).

(b) (5 pts) Give an example of functions f, g : S → T and h : T → U such that f 6= g but
h ◦ f = h ◦ g. (Be sure to specify what S, T , and U are.)

Let S = T = U = R, f(x) = sin(x), g(x) = cos(x), and h(x) = 0. Then h ◦ f(x) = 0
and h ◦ g(x) = 0 for all x ∈ R. But it is clear that f 6= g.


