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1. (10 pts) Prove that the set Q of all rational numbers is countably infinite. (Hint: First prove
that Q+ is countable.)

The proof that Q+ is countable is in your textbook (pp. 44-45).
An analogous argument shows that Q− is countable. Now that we have one-to-one corre-

spondences f : N → Q+ and g : N → Q−, the listing of the elements of Q as

0, f(1), g(1), f(2), g(2), . . .

gives a one-to-one correspondence N → Q. Hence Q is countable.

2. (10 pts) Prove that if z1, z2, and z3 are complex numbers on the unit circle such that
z1 + z2 + z3 = 0, then z1, z2, and z3 are vertices of an equilateral triangle.

This problem was on the third exam. See its solution on there.

3. (5 pts each) Suppose a and b are chosen from the given set and ∗ is the indicated operation.
Does the equation a∗x = b always have a unique solution in the set? If not, give an example
of an equation with the operation that does not have a unique solution in S.
(a) set of even integers, multiplication

The equation does not always have a solution in the set of even integers. For example,
it is obvious that none of the following equations have even integer solutions:

0x = 2

2x = 2

4x = 2

(b) set of odd integers, multiplication

The equation does not always have a solution in the set of odd integers. For example,
the equation 3x = 1 has no odd integer solution.

4. (10 pts) We defined taxicab distance on R2 by the formula

dT

(
(x1, y1), (x2, y2)

)
= |x1 − x2| + |y1 − y2|.

Prove that dT has all of the properties required of a distance function. You may use the fact
that the absolute value is a distance on R.

Nonnegativity: Obviously,

dT

(
(x1, y1), (x2, y2)

)
= |x1 − x2| + |y1 − y2| ≥ 0

Nondegeneracy: Since both absolute values are nonnegative, the only way

0 = dT

(
(x1, y1), (x2, y2)

)
= |x1 − x2| + |y1 − y2|

is if both |x1 − x2| = 0 and |y1 − y2| = 0. This happens if and only if x1 = x2 and
y1 = y2.

Symmetry: This follows from the symmetry of the absolute value.

dT

(
(x1, y1), (x2, y2)

)
= |x1 − x2| + |y1 − y2|

= |x2 − x1| + |y2 − y1| = dT

(
(x2, y2), (x1, y1)

)



Triangle inequality: We will use that the absolute value satisfies the triangle inequality
on R. (This was on the first exam.) That is

|x − y| ≤ |x − z| + |z − y|

for any x, y, z ∈ R. Hence

dT

(
(x1, y1), (x3, y3)

)
+ dT

(
(x3, y3), (x2, y2)

)
= |x1 − x3| + |y1 − y3| + |x3 − x2| + |y3 − y2|

= |x1 − x3| + |x3 − x2|
︸ ︷︷ ︸

≥|x1−x2|

+ |y1 − y3| + |y3 − y2|
︸ ︷︷ ︸

≥|y1−y2|

≥ |x1 − x2| + |y1 − y2| = dT

(
(x1, y1), (x2, y2)

)

5. (12 pts)
(a) What is an algebraic number?

An algebraic number is a number that is a root of a nonzero polynomial with integer
coefficients.

(b) Suppose that r is a nonzero algebraic number. Prove that 1/r is also algebraic.

Since r is algebraic, there exists a nonzero polynomial

p(x) = anxn + · · · + a1x + a0

with a0, a1, . . . , an ∈ Z such that p(r) = 0. Hence

0 =
1

rn
p(r) =

1

rn
(anrn + · · · + a1r + a0)

= an + an−1

1

r
+ · · · + a1

1

rn−1
+ a0

1

rn

Therefore 1/r is a root of the polynomial

q(x) = an + an−1x + · · · + a1x
n−1 + a0x

n.

The coefficients of q are the same as the coefficients of p, so they are still integers. Since
p was nonzero, ai 6= 0 for at least one i = 1, . . . , n. Hence q is a nonzero polynomial and
1/r is algebraic.

6. (10 pts) Let m < n be relatively prime positive integers. Prove that m/n has a finite decimal
representation 0.d1d2 . . . dt (with dt 6= 0) if and only if n = 2r5s for some r, s ∈ N such that
t = max(r, s).

This is Theorem 2.6 in your text. Its proof is on p. 36.

7. (6 pts each) Let f : A → B and g : B → C be functions.
(a) Prove that if f and g are both one-to-one then g ◦ f is one-to-one.

We need to prove that if g ◦ f(x) = g ◦ f(y) for some x, y ∈ A, then x = y. So suppose
g ◦ f(x) = g ◦ f(y). Then g(f(x)) = g(f(y)). Since g is one-to-one, f(x) = f(y). Since
f is one-to-one, x = y.

(b) Prove that if g ◦ f is onto then g is onto.

Suppose g ◦ f is onto. We need to prove that for any c ∈ C there exists some b ∈ B
such that g(b) = c. So let c ∈ C. Since g ◦ f is onto, there exists some a ∈ A such that
g ◦ f(a) = c. Let b = f(a). Then b ∈ B and g(b) = g(f(a)) = c.



(c) Give an example of functions f and g such that g ◦ f is onto but f is not onto. Be sure
to specify the domains and codomains and justify your example.

Let f : R → R be f(x) = |x| and g : R → {0} be g(x) = 0. Then g ◦ f(x) = 0.
Obviously, g ◦ f is onto, for example, g ◦ f(1) = 0. But f is not onto, for example, there
is no x ∈ R such that f(x) = −1.

8. Extra credit problem. (10 At’s) Let z1, z2, z3 ∈ C such that |z1| = |z2| = |z3|. Prove that

Arg

(
z3 − z2

z3 − z1

)

=
1

2
Arg

(
z2

z1

)

.

(Hint: Draw a picture and remember high school geometry.)

Observe that |z1| = |z2| = |z3| 6= 0, otherwise z1 = z2 = z3 = 0, and the divisions in the
problem do not make sense. So z1, z2, z3 are on a circle.

Remember that when you divide complex numbers in polar coordinates, you divide the
absolute values and subtract the angles. That is the argument of the result is the angle
between the two complex numbers. Now look at the diagram below.

z2

z1

z3

−
−z3

z3

z2
z1

α

β

Notice that

Arg

(
z2

z1

)

= α

and

Arg

(
z3 − z2

z3 − z1

)

= Arg

(
z2 − z3

z1 − z3

)

= β.

Notice that α is the central angle of the arc between z1 and z2 and β is the inscribed angle
of the same arc. We know from high school geometry that the central angle corresponding
to an arc is twice the inscribed angle corresponding to the same arc. (This was known to
Euclid 2300 years ago!) Therefore α = 2β. This is what we wanted to prove.


