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1. (10 pts) A solution is x% water. Some of the water evaporates, leaving a solution that is
(x−1)% water. Express the amount (portion) of the water that has evaporated as a function
of x.

WLOG, we had a 100 units of solution at the start. Of this, x units were water. Let y be
the number of units of water that evaporated. So we now have 100 − y units of solution, of
which x − y units are water. Hence

x − y

100 − y
=

x − 1

100
.

We need to solve this equation for y:

x − y

100 − y
=

x − 1

100

100(x − y) = (x − 1)(100 − y)

100x − 100y = 100x − xy − 100 + y

100 = (101 − x)y

y =
100

101 − x

Since we need the portion of the water that has evaporated, we really want

y/x =
100

(101 − x)x
.

2. (10 pts) Suppose “parallelogram” has just been defined as a quadrilateral with two pairs of
parallel sides and the following theorem is the first property of parallelograms to be deduced.
There is something wrong with the proof of the following theorem. Find the error and correct
the proof.

Theorem. The diagonals of a parallelogram bisect each other.

Proof: Let ABCD be a parallelogram with diagonals AC and BD intersecting at O. AD is
parallel to BC and AB is parallel to DC since ABCD is given as a parallelogram. Since
alternate angles formed by parallel lines are congruent, ∠CAD ∼= ∠ACB and ∠ADB ∼=
∠DBC. AD ∼= BC, since opposite sides of a paralellogram are equal in length. Thus
△AOD ∼= △COB by ASA congruence. Thus AO ∼= OC and BO ∼= OD, since corresponding
parts of congruent triangles are congruent. �
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The proof relies on the claim that opposite sides of a parallelogram are congruent. While
this is true, it is not obvious from the definition. Since this theorem is the first property



of parallelograms, we cannot have an earlier result that says so either. If we want to say
opposite sides are congruent, we need to prove it. Here is the corrected version:

Let ABCD be a parallelogram with diagonals AC and BD intersecting at O. AD is parallel
to BC and AB is parallel to DC since ABCD is given as a parallelogram. Since alternate
angles formed by parallel lines are congruent, ∠CAD ∼= ∠ACB and ∠ACD ∼= ∠CAB.
Now △ACD and △ACB share a side and have two pairs of congruent angles, hence they
are congruent by ASA. Therefore AD ∼= BC as they are corresponding sides. ∠ADB and
∠DBC are also alternate angles formed by parallel lines, hence they are congruent. Thus
△AOD ∼= △COB by ASA congruence. Thus AO ∼= OC and BO ∼= OD, since corresponding
parts of congruent triangles are congruent.

3. (5 pts) Prove that T (x, y) = (x+5, y) is a congruence transformation of the Euclidean plane
(with the Euclidean distance).

Let (x1, y1), (x1, y2) ∈ R
2. Then

d(T (x1, y1), T (x1, y2)) = d((x1 + 5, y1), (x1 + 5, y2))

=
√

((x1 + 5) − (x2 + 5))2 + (y1 − y2)2

=
√

(x1 − x2)2 + (y1 − y2)2

= d((x1, y1), (x1, y2))

Since T preserves distances, T is a congruence transformation.

4. (10 pts) Prove that the following two definitions of least common multiple are equivalent.

Definition 1. Given two positive integers a and b, the least common multiple of a and b is
the positive integer m such that
(a) m is a multiple of both a and b;
(b) If k is any integer that is a multiple of both a and b, then k is a multiple of m.

Definition 2. Given two positive integers a and b, the least common multiple of a and b is
the smallest positive integer m such that m is a multiple of both a and b.

Let a, b ∈ Z
+ and let m satisfy Definition 1. We need to show that m also satisfies

Definition 2. We already know m is a common multiple of a and b. Suppose k is another
common multiple of a and b. By Definition 1, m|k, that is k = qm for some q ∈ Z. Since m
and k are both positive, q must be positive. Hence q ≥ 1. So k = qm ≥ m. It follows that
m is smallest among the positive common multiples of a and b.

Conversely, let m be a number which satisfies Definition 2. Let k be any other common
multiple of a and b. By the Division Algorithm, k = qm + r where q, r ∈ Z and 0 ≤ r < m.
Since a|m and a|k, a|k − qm = r. Similarly b|r. Since m is the smallest positive common
multiple of a and b, and r < m, r must not be positive. Hence r = 0. So k = qm and m|k.

5. (15 pts) Let S be a geometric space with a metric d. Define a congruence transformation
(or isometry) on S as a one-to-one correspondence T : S → S such that for all x, y ∈ S,
d(T (x), T (y)) = d(x, y). Now define a subset U of S to be congruent to a subset V of S if
there is a congruence transformation T on S such that T (U) = V . Prove that this congruence
is an equivalence relation.

To simplify notation, denote U is congruent to V by U ∼= V .
First, notice that the identity map 1S is a one-to-one correspondence which obviously

preserves distances. Hence any U ⊆ S is congruent to itself. That is ∼= is reflexive.



Now, let U, V ⊆ S such that U ∼= V . Hence there exists an isometry T on S such that
T (U) = V . Since T is a bijection, it has an inverse map T−1, which is also a bijection. Let
x, y ∈ S. Let x′ = T−1(x) and y′ = T−1(y). Since T preserves distances

d(T (x′), T (y′)) = d(x′, y′).

But T (x′) = T (T−1(x)) = x and T (y′) = T (T−1(y)) = y. Hence

d(x, y) = d(T (x′), T (y′)) = d(x′, y′) = d(T−1(x), T−1(y).

Therefore T−1 also preserves distances. Obviously, T−1(V ) = U . Hence V ∼= U . This shows
∼= is symmetric.

Finally, let U, V, W ⊆ S such that U ∼= V and V ∼= W . Then there exist isometries T
and T ′ such that T (U) = V and T ′(V ) = W . Since T and T ′ are both bijections, so is the
composite map T ′ ◦ T . If x, y ∈ S, then

d(x, y) = d(T (x), T (y)) = d(T ′(T (x)), T ′(T (y)) = d(T ′ ◦ T (x), T ′ ◦ T (y)

since T and T ′ both preserve distances. Finally, notice that T ′ ◦ T (U) = W . Hence U ∼= W .
This shows ∼= is transitive.

6. (10 pts) Extra credit problem. Let T be a congruence transformation of the Euclidean
plane R

2 in the sense of the definition of problem 5. Is it true that the image of a circle
under T must be a circle? If so, prove it, if not, find a counterexample.

Yes, the image of a circle must be a circle. Let C be a circle with center P and radius r.
Then

C = {X ∈ R
2 | d(P, X) = r}.

Let D be the circle of radius r centered at T (P ). We will show T (C) = D. First suppose
that Y ∈ T (C). Then there is an X ∈ C such that T (X) = Y . Since T preserves distances

d(T (P ), Y ) = d(T (P ), T (X)) = d(P, X) = r.

Hence Y ∈ D. It follows that T (C) ⊆ D.
Conversely, let Y ∈ D. Since T is onto, there exists a point X ∈ R

2 such that T (X) = Y .
Now

d(P, X) = d(T (P ), T (X)) = d(T (P ), Y ) = r.

This shows X ∈ C. Hence Y = T (X) ∈ T (C). It follows that D ⊆ T (C). We can now
conclude T (C) = D.


