
Math 414 Final Exam Solutions

May 16, 2011

1. (10 pts) In Mathematique Moderne, a text for Belgian students written by Georges Papy
(1966), a direction is defined as a partition of the plane into lines. Then two lines are defined
to be parallel lines if and only if they are in the same direction. Compare this with the
following two definitions of parallel lines:

Definition 1. Two lines in the same plane are parallel if and only if they have no points in
common.

Definition 2. Two lines in the same plane are parallel if and only if they are both vertical
or they have the same slope.

Which (if either) of these definitions equivalent to Papy’s definition?

The first definition is not equivalent to Papy’s, but the second one is.
According to Definition 1, a line l is clearly not parallel to itself. But according to Papy’s

definition, it is. E.g. one direction according to Papy’s definition is the partition of the plane
into horizontal lines. That this is a partition of the plane is easy to see: every point of the
plane is on exactly one horizontal line. The x-axis is in this partition. So the x-axis and the
x-axis are in the same partition, and hence they are parallel according to Papy.

To show that Definition 2 is equivalent to Papy’s, we need to show that two lines k and
l are parallel according to Definition 2 if and only they are parallel according to Papy’s
definition. So let k and l be two lines that are parallel by Definition 2. If k and l are both
vertical, then they are both in the partition of the plane into vertical lines (this is a partition
for the same reason that horizontal lines form a partition). If k and l have the same slope, let
this slope be m. Let Sm the set of all lines of slope m in the plane. Then Sm is a partition of
the plane because every point is on exactly one line of slope m. So Sm is a direction. Since
k, l ∈ Sm, they are parallel by Papy’s definition.

Conversely, suppose k and l are parallel by Papy’s definition. Then they are in the same
partition of the plane. So either k = l or k and l have no point in common. If k = l then
obviously either k and l have the same slope or they are both vertical. So they are parallel
by Definition 2. If k and l do not intersect, they cannot possibly have different slopes (lines
of different slopes always intersect). So they either have the same slope, or they have no
slopes at all, i.e. they are vertical. In both cases, they are parallel according to Definition 2.

2. (10 pts) Prove that every rotation of the Euclidean plane is an isometry (preserves distance)
using the formula

Rφ(x, y) = (x cos(φ) − y sin(φ), x sin(φ) + y cos(φ)).

(Hint: You can fill up a whole page with computation, or do this in about four lines if you
think before you start computing away.)

Let P = (x1, y1) and Q = (x2, y2). Then

d(Rφ(P ), Rφ(Q))

=
√

((x1 − x2) cos(φ) − (y1 − y2) sin(φ))2 + ((x1 − x2) sin(φ) + (y1 − y2) cos(φ))2

=

√

((x1 − x2)2 cos2(φ) − 2(x1 − x2) cos(φ)(y1 − y2) sin(φ) + (y1 − y2)2 sin2(φ)+

(x1 − x2)2 sin2(φ) + 2(x1 − x2) sin(φ)(y1 − y2) cos(φ) + (y1 − y2)2 cos2(φ)



=

√

(x1 − x2)2(cos2(φ) + sin2(φ)) + (y1 − y2)2(sin
2(φ) + cos2(φ)

=
√

(x1 − x2)2 + (y1 − y2)2 = d(P, Q).

3. (10 pts) Let RC,φ : R
2 → R

2 be the rotation by (signed) angle φ centered at C. Find a
formula for RC,φ(x, y) when C = (a, b).

We can do this by doing a translation that moves C to the origin, followed by a rotation
by φ centered at the origin, followed by a translation that moves the origin back to C. That
is

RC,φ(x, y) = T(a,b) ◦ Rφ ◦ T(−a,−b)(x, y)

=

(
cos(φ) − sin(φ)
sin(φ) cos(φ)

) ((
x
y

)

+

(
−a
−b

))

+

(
a
b

)

= ((x − a) cos(φ) − (y − b) sin(φ) + a, (x − a) sin(φ) + (y − b) cos(φ) + b).

4. (10 pts) Let P = (x1, y1) and Q = (x2, y2) be points in R2. Define the function dM :
R

2 × R
2 → R by

dM (P, Q) = max(|x1 − x2|, |y1 − y2|).
Show that dM is a metric (distance).

• Non-negativity:

0 ≤ |x1 − x2| ≤ max(|x1 − x2|, |y1 − y2|) = dM (P, Q)

• Non-degeneracy: If

0 = dM (P, Q) = max(|x1 − x2|, |y1 − y2|)
then x1 − x2 = 0 and y1 − y2 = 0. Hence P = Q.

• Symmetry: Since

|x1 − x2| = |x2 − x1| and |y1 − y2| = |y2 − y1|
we have

dM (P, Q) = max(|x1 − x2|, |y1 − y2|) = max(|x2 − x1|, |y2 − y1|) = dM (Q, P )

• Triangle inequality: Let R = (x3, y3). Then dM (P, Q) = max(|x1−x3|, |y1−y3|). Either

max(|x1 − x3|, |y1 − y3|) = |x1 − x3|
or

max(|x1 − x3|, |y1 − y3|) = |y1 − y3|.
In the first case,

dM (P, R) = |x1 − x3|
≤ |x1 − x2| + |x2 − x3|
≤ max(|x1 − x2|, |y1 − y2|) + max(|x2 − x3|, |y2 − y3|)
= dM (P, Q) + dM (Q, R).



In the second case,

dM (P, R) = |y1 − y3|
≤ |y1 − y2| + |y2 − y3|
≤ max(|x1 − x2|, |y1 − y2|) + max(|x2 − x3|, |y2 − y3|)
= dM (P, Q) + dM (Q, R).

5. (10 pts) We proved in class that the composition of any three reflections is either a reflection
or a glide reflection. Use this result to show that any composition of reflections, rotations,
translations, and glide reflections is itself either a reflection, a rotation, a translation, or a
glide reflection.

Reflections, rotations, translations, and glide reflections can all be written as compositions
of reflections. So it is enough to prove that any composition of reflections is a reflection,
a rotation, a translation, or a glide reflection. We will do this by induction. Let T be a
composition of n reflections. The statement is trivially true if n = 1. If n = 2, it is given by
the two-reflection theorems (Theorems 7.9(a) and (b)). The result is given for n = 3 in the
statement of the problem.

For n = 4,
T = rd ◦ rc ◦ rb ◦ ra = rd ◦ (rc ◦ rb ◦ ra).

We know rc ◦ rb ◦ ra is either a reflection or a glide reflection. If it is a reflection, T is a
composition of two reflections, hence we are back in the n = 2 case. If rc ◦ rb ◦ ra is a glide
reflection, say re ◦ T~v, then

T = rd ◦ re ◦ T~v.

If d and e are parallel, then rd◦re is a translation (by Theorem 7.9(b)). Then T is a composi-
tion of two translations, which is a translation, which is a composition of two reflections. If d
and e intersect, then rewrite T~v as rg ◦rf where f and g are parallel lines. By the Translation
Flexibility Theorem (Theorem 7.10(b)) we can choose f and g so that g is concurrent with
d and e. Then

T = rd ◦ re ◦ rg ◦ rf = (rd ◦ re ◦ rg
︸ ︷︷ ︸

rh

) ◦ rf ,

where rh is a reflection by the proof of the 3-reflection theorem (Theorem 7.15, in the
statement of this problem). Hence T is a rotation or a translation. In either case, T is a
composition of two reflections.

Now, let n > 4 and assume that the statement has been proven for all k < n. Take the
first four reflections in T . By the argument we have just given, these can be replaced with
a composition of two reflections. So T is also a composition of n − 2 reflections. By the
inductive hypothesis, T is a reflection, a rotation, a translation, or a glide reflection.

6. Our textbook defined a transformation of the plane R
2 as a one-to-one function T : R

2 → R
2.

We defined an isometry of R
2 as a map T : R

2 → R
2 which preserves distance.

(a) (5 pts) Prove that every isometry is one-to-one.

Let T be an isometry and P, Q ∈ R
2. Suppose T (P ) = T (Q). Then

0 = d(T (P ), T (Q)) = d(P, Q) =⇒ P = Q.

Hence T is one-to-one.

(b) (10 pts) Does there exist an isometry of the plane which is not onto? If so, find an
example (and justify that it is an example). If not, give an argument why you do not
expect to be able to find such an isometry.



No such thing should exist. The reason has to do with triangulation: given three distinct
points P, Q, R in R

2, any other point X is uniquely determined by its distances from
P, Q and R.
Let T be an isometry of R

2 and choose three distinct points P, Q and R. Let P ′ = T (P ),
Q′ = T (Q), and R′ = T (R). Now, let Y be any point in R

2. Let a = d(Y, P ′),
b = d(Y, Q′), and c = d(Y, R′). Use a, b, c to locate the unique point X in R

2 whose
distances from P, Q and R are a, b, and c respectively. That such a point exists is
guaranteed by the fact △PQR ∼= △P ′Q′R′, which is so because T preserves the distances
between these points. Now, let X ′ = T (X). Since

d(X ′, P ′) = d(X, P ) = a = d(Y, P ′)

d(X ′, Q′) = d(X, Q) = b = d(Y, Q′)

d(X ′, R′) = d(X, R) = c = d(Y, R′)

X ′ must be the unique point whose distances from P ′, Q′ and R′ are a, b and c. But
that point is Y . So Y = T (X). That is every point of R

2 is in the image of T .

(c) (5 pts) Does there exist a one-to-one correspondence T : R
2 → R

2 which is not an
isometry with respect to the Euclidean distance? If so, find one (and justify that it is
an example). If not, argue why such a one-to-one correspondence does not exist.

There are many such. For example, dilation by a factor of 2 centered at the origin
T (x, y) = (2x, 2y). This is clearly a one-to-one correspondence since it has an obvious
inverse S(x, y) = (x/2, y/2). But it is not an isometry. E.g.

d(T (1, 0), T (0, 0)) = d((2, 0), (0, 0)) = 2 6= 1 = d((1, 0), (0, 0)).

7. (a) (10 pts) Let l be a line in the complex plane which passes through the origin and makes
a (signed) angle of φ with the x-axis. Let rl : C → C denote reflection across l. Derive
a formula for rl.

See Theorem 7.11.

8. (10 pts each) Extra credit problem. Let d1, d2 : R
2×R

2 → R
≥0 be two distance functions

on the plane. We say d1 is equivalent to d2 if there exist positive real constants m and n
such that

md1(P, Q) ≤ d2(P, Q) ≤ nd1(P, Q)

for all points P, Q ∈ R
2.

(a) Prove that equivalence of distances is an equivalence relation.

Let d1, d2, and d3 be distances. Denote d1 is equivalent to d2 by d1 ∼ d2.
• Reflexivity: Notice that d1 ∼ d1 because 1d1(P, Q) ≤ d1(P, Q) ≤ 1d1(P, Q).

• Symmetry: Suppose d1 ∼ d2. Then

md1(P, Q) ≤ d2(P, Q) ≤ nd1(P, Q)

for some m, n ∈ R
+. Hence

1

n
d2(P, Q) ≤ d1(P, Q) ≤ 1

m
d2(P, Q).

So d2 ∼ d1.



• Transitivity: Suppose d1 ∼ d2 and d2 ∼ d3. Then

md1(P, Q) ≤ d2(P, Q) ≤ nd1(P, Q)

for some m, n ∈ R
+, and

m′d2(P, Q) ≤ d3(P, Q) ≤ n′d2(P, Q)

for some m′, n′ ∈ R
+ Hence

mm′d1(P, Q) ≤ m′d2(P, Q) ≤ d3(P, Q) ≤ n′d2(P, Q) ≤ nn′d1(P, Q).

Since mm′ and nn′ must be positive real numbers, d1 ∼ d3.

(b) Prove that the Euclidean distance dE((x1, y1), (x2, y2)) =
√

(x1 − x2)2 + (y1 − y2)2 is
equivalent to the taxicab distance dT ((x1, y1), (x2, y2)) = |x1 − x2| + |y1 − y2|.

First, notice that

dE((x1, y1), (x2, y2))
2 = (x1 − x2)

2 + (y1 − y2)
2

≤ (x1 − x2)
2 + (y1 − y2)

2 + 2 |x1 − x2||y1 − y2|
︸ ︷︷ ︸

≥0

= |x1 − x2|2 + |y1 − y2|2 + 2|x1 − x2||y1 − y2|
= dT ((x1, y1), (x2, y2))

2

Since distances are nonnegative numbers and the square root function is increasing on
the nonnegative reals, this implies

dE((x1, y1), (x2, y2)) ≤ dT ((x1, y1), (x2, y2)).

Now, notice that

2dE((x1, y1), (x2, y2))
2 − dT ((x1, y1), (x2, y2))

2

= 2(x1 − x2)
2 + 2(y1 − y2)

2 − |x1 − x2|2 − |y1 − y2|2 − 2|x1 − x2||y1 − y2|
= (x1 − x2)

2 + (y1 − y2)
2 − 2|x1 − x2||y1 − y2|

=
(
|x1 − x2| + |y1 − y2|

)2 ≥ 0

Hence
2dE((x1, y1), (x2, y2))

2 ≥ dT ((x1, y1), (x2, y2))
2.

Once again, the square root function is increasing on the nonnegative reals, so
√

2dE((x1, y1), (x2, y2)) ≥ dT ((x1, y1), (x2, y2)).

Therefore

1dE((x1, y1), (x2, y2)) ≤ dT ((x1, y1), (x2, y2)) ≤
√

2dE((x1, y1), (x2, y2)).

So dE is equivalent to dT .


