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1. (10 pts) In the context of incidence geometry, prove that for every point P , there exist at
least two distict lines through P . This is Prop 2.5 in the textbook, so you obviously cannot
use Prop 2.5 in your argument.

Let P be any point. By Axiom I-3, there exist three distinct noncollinear points A, B, C.
Now there are two cases:

P is one of the three noncollinear points: Without loss of generality, P = A (other-
wise just relabel the points). By Axiom I-1, there is a unique line through A and B

and a unique line through A and C. Call these
←→
AB and

←→
AC. These two lines must be

distinct, otherwise A, B, C would lie on the same line. So
←→
AB and

←→
AC are two distinct

lines through A = P .
P is not one of the three noncollinear points: Now consider the three unique lines
←→
AP ,

←→
BP , and

←→
CP (by Axiom I-1). If these three lines were all equal, then A, B, C would

all lie on this line. That would contradict the noncollinearity of A, B, C. So at least two
of these lines are distinct.

2. (10 pts) Show that when each of two models of incidence geometry has exactly three points
in it, the models are isomorphic.

Let M1 and M2 be models of incidence geometry with 3 points each. Call the points in
M1 A1, B1, C1 and the points in M2 A2, B2, C2. By Axiom I-3, both models must have 3
distinct noncollinear points. Since each model has exactly 3 distinct points, those 3 points
must be noncollinear.

By Axiom I-1, M1 must have a unique line through A1 and B1. Call this line
←−−→
A1B1.

Point C1 cannot lie on
←−−→
A1B1 by the noncollinearity of A1, B1, C1. Similarly, M1 must have

unique lines
←−→
A1C1 and

←−−→
B1C1, which do not contain the third point. These lines are obviously

distinct (e.g. because each is not incident with a different point). We will show that these
are all the lines in M1. Suppose l is a line in M1. By Axiom I-2, l must contain at least
two points in M1. It cannot contain 3 points, otherwise A1, B1, C1 would be collinear. So l

contains exactly two points, namely A1 and B1, or A1 and C1, or B1 and C1. That is l is

one of the lines
←−−→
A1B1,

←−→
A1C1, or

←−−→
B1C1.

An analogous argument shows that M2 must have exactly three distinct lines
←−−→
A2B2,

←−→
A2C2,

and
←−−→
B2C2, and none of these pass through the third point.

We are now ready to set up a one-to-one correspondence between points and lines in the
two models:

M1 M2

A1 ↔ A2

B1 ↔ B2

C1 ↔ C2

←−−→
A1B1 ↔

←−−→
A2B2

←−→
A1C1 ↔

←−→
A2C2

←−−→
B1C1 ↔

←−−→
B2C2



It is quite clear that these correspondences respect incidence. Here is an example.
←−−→
A1B1āA1, B1

but
←−−→
A1B1 6 āC1. The corresponding line in M2 is

←−−→
A2B2, and

←−−→
A2B2āA2, B2 but

←−−→
A2B2 6 āC2.

Note: Many of you mistook this problem for what is done in Example 5 on p. 80. That
example shows you that two particular 3-point models of incidence geometry are isomorphic,
not that any two 3-point models are isomorphic. Those are two different things, although
some parts of the two proofs are similar. If you don’t understand what the difference is
between this statement and what is proven in Example 5, come and talk to me. It’s important
that we clear up the difference.

3. (10 pts) Assuming the context of the axiomatic geometry we have been building in class (see
axioms at the end of this exam), prove that if A, B, C, and D are points such that ABC and
BCD, then A, B, C, D are distinct and collinear. This is Theorem 3(b), so you cannot use
Theorem 3 in your proof, but you are allowed to use any of the other axioms and theorems
in your argument.

By Axiom 6, A, B, and C are distinct. By the same axiom applied to BCD, B, C, and
D are distinct. Notice that A and D could still be the same. Suppose A = D. Then BCD

is the same as BCA. But ABC and BCA contradict according to Theorem 1. So A 6= D,
and A, B, C, D are distinct.

By Axiom 6, ABC implies that A, B, and C lie on some line k. Similarly, BCD implies
B, C, and D lie on a line l. But k and l both go through the distinct points B and C, hence
Axiom 3 shows k = l. Therefore A, B, C, D are collinear.

4. Let P be a projective plane.
(a) (3 pts) What is the dual of P?

The dual of P is the interpretation P∗ in which the points are the lines of P, the lines
are the points of P, and incidence is the same as in P.

(b) (12 pts) Let P∗ be the dual of P. Prove that P∗ is also a projective plane.

To prove that Axioms I-1, I-2’, I-3 and the Elliptic Parallel Property hold in P∗, we
need to show that their duals hold in P.
The dual of Axiom I-1 says that any two distinct lines have a unique point incident with
both. The existence part of this statement in the Elliptic Parallel Property, which we
know holds in P. The uniqueness part is Proposition 2.1, which holds in any incidence
geometry, as we proved in class.
The dual of Axiom I-2’ says that any point has at least three distinct lines incident to
it. Let P be a point. By Proposition 2.4, there is a line l which does not pass through
P . By Axiom I-2’, l has at least three distinct points A, B, and C on it. Clearly, P is

not equal to any of these points. By Axiom I-1, there exist unique lines
←→
PA,

←→
PB, and

←→
PC. If any two of these lines were the same, then by Axiom I-1, they would have to be
equal to l. But that cannot be since P is incident to these three lines, but not to l. So
these are three distinct lines incident with P .
The dual of Axiom I-3 says that there exist three distinct nonconcurrent lines. This is
Proposition 2.2 and we proved it in class.
Finally, the dual of the Elliptic Parallel Property says the any two distinct points are
incident to a common line, which is part of Axiom I-1 in P.



5. (15 pts) Invent a model that satisfies Axioms 1–7 of our axiomatic geometry. First, clearly
state your interpretation of the undefined terms (point, line, lie on, between). Then prove
that your model satisfies Axioms 1–7.

Let S = {A, B} be a set of two elements. Let points be the elements of S and the only
line the set S itself. Let a point lie on a line if it is an element of that line. That is, in our
case, both points lie on the only line in our interpretation. Finally, let PQR be always false
for any three points P, Q, R. (That our interpretation has only two points does not relieve
us of having to define between because a priori, A, B, and C need not be distinct.)

Axiom 1 holds because A is a point and S is a line. Axiom 2 holds because the only line
is S and it contains A and B. Axiom 3 holds because the only distinct points are A and
B, and they are on S, which is the only line. Axioms 4–7 hold because they are conditional
statements in which the premise can never be true.

Therefore this interpretation is a model of Axioms 1–7.

6. (15 pts) Extra credit problem. Show that Axiom 7 of our Axiomatic Geometry is in-
dependent of Axioms 1–6. (Hint: you can do this by inventing two models: one in which
Axioms 1–7 hold, and one in which Axioms 1-6 hold but Axiom 7 does not. Your solution
to problem 5 will help.)

First, note that the model in the solution to problem 5 shows that Axiom 7 can hold while
Axioms 1–6 hold.

We will now give a model in which Axioms 1–6 hold, but Axiom 7 does not. Let S =
{A, B, C} be a set of three elements. Let the points be the elements of S and the only line
S itself. Let a point lie on a line if it is an element of that line. That is, in our case, all
three points lie on the only line in our interpretation. Finally, let PQR be always false for
any three points P, Q, R.

Axiom 1 holds because A is a point and S is a line. Axiom 2 holds because the only line is
S and it contains A and B. Axiom 3 holds because any two distinct points lie on S, which is
the only line. Axioms 4–6 hold because they are conditional statements in which the premise
can never be true. Finally, Axiom 7 fails to hold, because even though A, B, and C are
distinct and collinear, none of ABC, BAC, and ACB are true.


