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1. (5 pts) Given a ray
−−→
AB and a point C, such that C is on the line

←→
AB and is between A and

B, can you prove from the definition of ray and the postulates we have so far that
−−→
AB =

−→
AC?

Why or why not?

This is not possible to do. We would need to show that every point of
−−→
AB is also a point

of
−→
AC and vice versa. So what are the points on

−−→
AB? By definition, it’s A, B, and any

point D on the line
←→
AB such that either D is between A and B or B is between A and D.

It is easy to prove that A and B are also points of
−→
AC. It’s those other points D that are

the source of trouble. We would have to know that if a point D is between A and B, then it
is either between A and C or beyond C, i.e. C is between A and D. We have presently no
postulate, common notion, definition, theorem, etc that tells us this is true.

2. (5 pts each) Define the following terms:
(a) The midpoint of a segment AB.

The midpoint of a segment AB is a point M on AB between A and B such that
AM ∼= MB.

(b) Points A, B, and C are collinear.

Points A, B, and C are collinear if there exists a line l such that A, B, and C are on l.

(c) The triangle △ABC formed by three non-collinear points A, B, and C.

The triangle △ABC formed by three non-collinear points A, B, and C is the union of
the three line segments AB, AC, and BC.

3. (10 pts) Remember that Euclid’s postulates allow you to use an unmarked straightedge and
a collapsible compass in geometric constructions. Given a line segment AB, construct the
perpendicular bisector of AB. Be sure to describe each step of your construction precisely.

1. Draw a circle of radius AB centered at A.
2. Draw a circle of radius AB centered at B.
3. The above two circles will intersect at two points P and Q. Draw the line

←→
PQ. This is

the perpendicular bisector of AB.

4. (5 pts each) State the following definitions:
(a) Circle of radius OA centered at O.

The circle of radius OA centered at O is the set of all points P such that OP ∼= OA.

(b) Ray
−−→
AB.

The ray
−−→
AB is the following set of points: A, B, and any point C on the line

←→
AB such

that either C is between A and B or B is between A and C.

(c) Right angle.

An angle is a right angle if it has a supplementary angle it is congruent to.



5. (15 pts) Euclid proves the familiar SAS congruence theorem in Proposition 4 of Book I of
his Elements. The statement and proof go like this, slightly adapted to modern language
and notation.

Theorem. Let △ABC and △DEF be two triangles such that AB ∼= DE, AC ∼= DF , and

�BAC ∼= �EDF . Then I say that BC ∼= EF , �ABC ∼= �DEF , and �ACB ∼= �DFE.

Proof: If △ABC is overlaid on △DEF so that A is placed on top of D and
←→
AB is placed

on top of
←→
DE, then the point B will coincide with E because AB ∼= DE. Also,

←→
AC will

coincide with
←→
DF because �BAC ∼= �EDF . Therefore the point C will coincide with F

because AC ∼= DF . Since B coincides with E and C coincides with F , the line segments
BC and EF also coincide and therefore BC ∼= EF by Common Notion 4. Now △ABC

and △DEF coincide, therefore �ABC and �DEF coincide and also �ACB and �DFE

coincide. Hence �ABC ∼= �DEF , and �ACB ∼= �DFE by Common Notion 4. �

(a) There is at least one claim in this proof which does not follow from our postulates and
common notions. Find this claim and explain why it doesn’t follow.

There are several problems with this proof. One is that the claim that AB ∼= DE

implies B coincides with E does not follow from any postulate or result we have so far.

Similarly, we have no reason to believe that �BAC ∼= �EDF implies
←→
AC coincides

with
←→
DF .

(b) What new postulate would Euclid need to assume so his proof above is correct?

He would have to assume that if two line segments are congruent then when you overlay
them then their endpoints coincide. Similarly, that when two angles are congruent, then
when you overlay them, their corresponding sides end up being the same rays. Here is
one way to postulate the first of these:
If A, B, C, D are collinear points such that B is between A and C and B is between A

and D and BC ∼= BD then C = D.

6. (10 pts) Extra credit problem. Remember that our statement of the Parallel Postulate is
really Playfair’s postulate: Given a line l and a point p that does not lie on l, there exists a
unique line m through P that is parallel to l.

Here is Euclid’s own formulation: If a line segment intersects two straight lines forming
two interior angles on the same side that sum to less than two right angles, then the two
lines, if extended indefinitely, meet on that side on which the angles sum to less than two
right angles.

Find a proof that Playfair’s parallel postulate implies Euclid’s parallel postulate.

This is not so easy. The difficulty is not so much coming up with a proof, but being sure
that the proof is not circular, that is it only uses results of geometry that are independent
of Euclid’s parallel postulate.

Let l, k, m, α, and β be as in the diagram below, such that α + β is less than two right
angles. (If you have only a line segment instead of m, just extend it to a line.)
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Suppose, on the contrary to Euclid’s parallel postulate, that l and k do not intersect, that
is l‖m. Now construct a line n so that the angle between k and n at P is α, as in the diagram
below. By Playfair’s postulate, n cannot be parallel to l, since m already is. Therefore l and
n must intersect at some point R. Now the △PQR has an interior angle α and an exterior
angle α too. This violates the Exterior Angle Theorem, which says that any exterior angle
must be greater than either of the interior angles not adjacent to it. Fortunately, the proof
of this theorem does not use Euclid’s parallel postulate.
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If you don’t recognize this theorem, or are not convinced that it can be proven from only
Euclid’s first four postulates, here is a proof.

Construct the median RM as below and S such that RM ∼= MS. Since M is the midpoint
of PQ, PM ∼= MQ. Also, �RMP and �QMS are vertical angles, hence congruent. Now
△RMP ∼= △QMS by SAS, whose (somewhat deficient) proof you saw earlier in this exam.
While we had some concerns about that proof, they weren’t that we needed the parallel
postulate to prove it.
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