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1. (10 pts) In this exercise, you will work in the axiomatic geometry we have been constructing
in class. The axioms and theorems are listed at the end of the exam.

Prove the following statement without using Theorem 8. If ABC, then
−→
AC ⊆

−−→
AB.

Let X ∈
−→
AC. Then X = A or X = C or AXC or ACX. Let’s consider these cases one

by one. In each case, we need to show X ∈
−−→
AB.

Case X = A: In this case, X ∈
−−→
AB by definition.

Case X = C: In this case, X ∈
−−→
AB because AXC holds.

Case AXC: There are a few possibilities here. If X = B, then X ∈
−−→
AB by definition. If

X 6= B, we can apply Axiom 9 to AXC and ABC to get AXB or ABX. In either case,

X ∈
−−→
AB.

Case ACX: Applying Axiom 8 to ABC and ACX gives ABX, hence X ∈
−−→
AB.

2. (10 pts each) In this exercise, you will work in an incidence geometry, i.e. one in which the
axioms of incidence geometry (listed at the end of this exam) hold.

Let S be the following statement in the language of incidence geometry: If l and m are
two distinct lines, then there exists a point P that does not lie on either l or m.
(a) Show that S is not a theorem in incidence geometry, i.e. cannot be proved from the

axioms of incidence geometry.

Note that the statement is false in the 3-point model of incidence geometry (Example
1 on p. 72). For example, the lines {A, B} and {A, C} are distinct, but every point lies
on at least one of them.
Since the statement is false in a model–in which all the axioms hold–it must not be
provable from the axioms.

(b) Show however that the statement holds in every projective plane. Hence ∼ S cannot
be proved from the axioms of incidence geometry either, so S is independent of those
axioms.

Let l and m be distinct lines in a projective plane. By Axiom I-2’, we have at least two
distinct points Q, R on l and S, T on m. Note that Q and R cannot both be incident
with m, otherwise l = m by the uniqueness part of Axiom I-1. So at least one of Q and
R is not on m. Let’s say Q 6 ām. Similarly, at least one of S and T is not on l, let’s say
S 6 āl. Hence Q and S are distinct.
By Axiom I-1, there is a unique line n through Q and S. By Axiom I-2’, there are at
least three points on n. At least one of these three points must be different from Q

and S. Call this point P . We claim that P does not lie on l or m. Suppose P is on
l. Then P and Q are distinct points that lie on both l and n. Hence l = n by Axiom
I-1. But this cannot be, since Sān and S 6 āl. The contradiction shows that P 6 āl. By a
symmetric argument, P 6 ām. Therefore there is indeed a P that does not lie on either
l or m.

3. (15 pts) Construct two nonisomorphic models of incidence geometry with exactly 4 points
each. Prove that your models are not isomorphic.

Let S be a set of 4 elements, say S = {A, B, C, D}. Consider the following two models.



M1

Points: elements of S.
Lines: 2-element subsets of S.
Incidence: Xāl if X ∈ l.

M2

Points: elements of S.
Lines: {A, B, C}, {A, D}, {B, D}, {C, D}.
Incidence: Xāl if X ∈ l.

That M1 is a model of incidence geometry is proved in the textbook. To see that M2 is a
model, we need to check that the three axioms hold. Indeed, it is easy to check that any two
points have a line incident to them, and there is only one such line for each pair of points.
E.g. the point B and C have only the line {A, B, C} incident to them. Thus Axiom I-1 holds.
It is clear that every line has at least two points on it too. Thus Axiom I-2 holds. Finally,
there do exist three non-collinear points, e.g. A, B, D. Thus Axiom I-3 holds.

To show that the two models are nonisomorphic, we need to prove that there cannot exist
a one-to-one correspondence of points σ and a one-to-one correspondence of lines θ from M1

to M2 (or vice versa) which respects incidence. But M1 has 6 distinct lines while M2 has
only 4. So no one-to-one correspondence can exist between the lines in M1 and those in M2.

4. (15 pts) Prove the following statement in the axiomatic geometry we have been constructing
in class: If ABC and ADC and B 6= D, then BDC or DBC.

If ABC and ADC and B 6= D, then A, B, C, and D are distinct and collinear by Theorem
3(d). In particular, B, D, and C are distinct and collinear. By Axiom 7, BDC or DBC or
BCD.

Suppose BCD. Then Theorem 4 (applied to ABC and BCD) says ACD and ABD. But
ACD contradicts ADC by Theorem 1. Hence BCD must be false.

The only remaining possibility is that BDC or DBC must hold.

5. (15 pts) Extra credit problem. Axiom 10 and Axiom 11 in our axiomatic geometry state
that line segment congruence is reflexive and transitive. In class we proved that congruence
of line segments is also symmetric. Now suppose, that we replace Axiom 10 by the following
symmetry axiom:

Axiom 10’. If AB ≡ CD then CD ≡ AB.

Can you now prove that congruence is reflexive?

Yes, this can be done. You may be tempted to say that if AB ≡ CD then CD ≡ AB, and
now by transitivity (Axiom 11) on AB ≡ CD and CD ≡ AB, we get AB ≡ AB. But what
is CD? Let’s review again what exactly we are trying to prove: if AB is a line segment, then
AB ≡ AB. Notice that we can take for granted that we have a line segment AB, otherwise
there is nothing to prove. But there is no mention of CD in the statement of the theorem.

Perhaps we can resolve this issue if we start our proof by saying let CD be a line segment
such that AB ≡ CD. That would be better, but there is still a logical flaw: how do we know
that such a line segment exists? We would need to prove that there is in fact a line segment
CD in our geometry which is congruent to AB. Where could we get such a line segment?
We can use Axiom 13 to construct one!

Here is the complete proof. Let AB be a line segment. Then A 6= B by the definition of
line segment. Axiom 13 applied to A 6= B and A 6= B says that there is a point C such that
ABC and AB ≡ BC. By Axiom 10’, BC ≡ AB. Now apply Axiom 11 to AB ≡ BC and
BC ≡ AB to conclude AB ≡ AB.


