MATH 521A EXAM 1 SOLUTIONS Oct 7, 2009

1. (10 pts) Show that any nonempty set of integers that is closed under subtraction must also be closed under addition.

Let S be such a set. Since S is nonempty, there is an element $x \in S$. Since S is closed under subtraction, $0 = x - x \in S$.

Let $x, y \in S$. We need to show $x + y \in S$. First notice that $-y = 0 - y \in S$ by closure under subtraction. For the same reason, $x + y = x - (-y) \in S$.

2. (10 pts) Let $a, b \in \mathbb{Z}^*$. Show that $a\mathbb{Z} \cap b\mathbb{Z} = [a, b]\mathbb{Z}$.

To simplify notation, let m = [a, b].

We will first show $a\mathbb{Z} \cap b\mathbb{Z} \subseteq m\mathbb{Z}$. Since $a\mathbb{Z}$ and $b\mathbb{Z}$ are the sets of multiples of a and b respectively, $a\mathbb{Z} \cap b\mathbb{Z}$ is the set of common multiples of a and b. So any $x \in a\mathbb{Z} \cap b\mathbb{Z}$ is a multiple of both a and b. Therefore m|x, and hence $x \in m\mathbb{Z}$. So $a\mathbb{Z} \cap b\mathbb{Z} \subseteq m\mathbb{Z}$.

Now, we will show $m\mathbb{Z} \subseteq a\mathbb{Z} \cap b\mathbb{Z}$. Let $x \in m\mathbb{Z}$. Then m|x. But a, b|m, so a, b|x. Therefore x is a common multiple of a and b and hence $x \in a\mathbb{Z} \cap b\mathbb{Z}$. This shows $m\mathbb{Z} \subseteq a\mathbb{Z} \cap b\mathbb{Z}$. We can now conclude $a\mathbb{Z} \cap b\mathbb{Z} = m\mathbb{Z}$.

3. (10 pts) Solve the following system of congruences.

 $2x \equiv 5 \mod 7, \qquad 3x \equiv 4 \mod 8.$

(Hint: First reduce to the usual form.)

Since 4 is a multiplicative inverse of 2 modulo 7 and 3 is a multiplicative inverse of 3 modulo 8, multiply the first congruence by 4 and the second by 3:

 $2x \equiv 5 \mod 7 \implies 4(2x) \equiv 4 \cdot 5 \mod 7 \implies x \equiv 6 \mod 7$

 $3x \equiv 4 \mod 8 \implies 3(3x) \equiv 3 \cdot 4 \mod 8 \implies x \equiv 4 \mod 8$

From this last congruence, x = 8n + 4 for some $n \in \mathbb{Z}$. Hence

$$8n + 4 \equiv 6 \mod 7 \implies n \equiv 6 - 4 \mod 7 \implies n \equiv 2 \mod 7$$

This means n = 7m + 2 for some $m \in \mathbb{Z}$. Hence x = 8(7m + 2) + 4 = 20 + 56m. Or $x \equiv 20 \mod 56$.

Let's check the solution.

$$x \equiv 20 + 56m \equiv 20 \equiv 6 \mod 7 \implies 2x \equiv 12 \mod 7 \implies 2x \equiv 5 \mod 7 \checkmark$$

 $x \equiv 20 + 56m \equiv 20 \equiv 4 \mod 8 \implies 3x \equiv 12 \mod 8 \implies 3x \equiv 4 \mod 8 \checkmark$

4. (a) (3 pts) State the Well-Ordering Principle.

Any nonempty subset of the natural numbers (or the positive integers) contains a minimal element.

(b) (12 pts) State and prove the Division Algorithm.

See Theorem 1.1.3 and its proof in the textbook.

5. Let $n \in \mathbb{Z}^+$.

(a) (5 pts) Define what a zero divisor is in \mathbb{Z}_n . Give an example of an element in some \mathbb{Z}_n that is a zero divisor and an element that is not a zero divisor.

An element $[a] \in \mathbb{Z}_n$ is a zero divisor if there is another element $[b] \neq [0]$ such that [a][b] = [0].

(b) (10 pts) Prove that an element in \mathbb{Z}_n has a multiplicative inverse if and only if it is not a zero divisor.

You can give the two-step proof of Proposition 1.4.5 in the textbook. Alternately, here is a more direct proof.

Suppose [a] has a multiplicative inverse $[a]^{-1}$. Then

 $[a][b] = [0] \implies [a]^{-1}([a][b]) = [a]^{-1}[0] \implies ([a]^{-1}[a])[b] = [0] \implies [b] = [0].$

That is the only element $[b] \in \mathbb{Z}_n$ such that [a][b] = [0] is [0] itself. This shows [a] cannot be a zero divisor.

Now, suppose [a] has is not a zero divisor. Then none of $[a][1], [a][2], \ldots, [a][n-1]$ are [0]. If one of them is [1], then [a] has a multiplicative inverse, and we are done. If none of them are [1] (or [0]), then two elements on this list must be equal by the Pigeon Hole Principle. This is because other than [0] and [1], \mathbb{Z}_n has only n-2 elements left, and the list has n-1 elements. So there exist $[b] \neq [c]$ such that [a][b] = [a][c]. Hence [a]([b] - [c]) = [0]. Since $[b] \neq [c], [b] - [c] \neq [0]$. But this contradicts that [a] is not a zero divisor.

6. (10 pts) **Extra credit problem.** An element [a] of \mathbb{Z}_n is said to be *nilpotent* if $[a]^k = [0]$ for some k. Show that \mathbb{Z}_n has no nonzero nilpotent elements if and only if n has no factor that is a square (except 1).

We will prove that \mathbb{Z}_n has a nonzero nilpotent element if and only if n has a factor $m^2 \neq 1$. First suppose that n has a square factor m^2 . Then $n = m^2 l$ for some $l \in \mathbb{Z}$. Let a = ml. Notice that $n \nmid a$, but $n \mid a^2 = m^2 l^2$. Hence $[a] \neq [0]$, but $[a]^2 = [0]$.

Conversely, let $[a] \neq [0]$ be an element in \mathbb{Z}_n such that $[a]^k = [0]$. Hence $n \nmid a$ and $n \mid a^k$. Let d = (n, a) and n = dm and a = db where $m, b \in \mathbb{Z}$. We know that (m, b) = 1 (this was homework exercise 1.2.8). Note

$$n|a^k \implies dm|(db)^k = d^k b^k \implies m|d^{k-1}b^k.$$

By Prop 1.2.3d, (m, b) = 1 implies $(m, b^k) = 1$. Hence $m|d^{k-1}$ by Prop 1.2.3b. Since $m^2 \neq 1 \implies m \neq 1$, there exists a prime divisor p of m. Now

$$p|m \text{ and } m|d^k \implies p|d^k \implies p|d$$

by Exercise 1.1.7 and Prop 1.2.3d (if $p \nmid d$ then (p, d) = 1 hence $(p, d^k) = 1$). Now combine p|m and p|d to conclude $p^2|dm = n$. Hence n has a factor that is a square.