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1. (10 pts) Let p be prime and a, b ∈ Z. Prove that

(a + b)p ≡ ap + bp mod p.

By the Binomial Theorem,

(a + b)p =

p
∑

n=0

(
p

n

)

anbp−n

where (
p

n

)

=
p!

n!(p − n)!
.

Suppose 1 < n < p. Notice that since n < p, none of the factors in n! = n(n − 1) · · · 1 are
divisible by p. Since 1 < n, none of the factors in (n − p)! = (n − p)(n − p − 1) · · · 1 are
divisible by p either. Hence p and n!(n − p)!) are relatively prime.

On the other hand, we know
(

p
n

)
is an integer, so n!(n−p)! divides p! = p(p−1)!. Therefore

n!(n − p)! must divide (p − 1)! (by Prop 1.2.3(b)). That is (p−1)!
n!(p−n)! ∈ Z and

(
p

n

)

=
p!

n!(p − n)!
= p

(p − 1)!

n!(p − n)!

is a multiple of p and
(

p

n

)

≡ 0 mod p.

We can now conclude

(a + b)p ≡

p
∑

n=0

(
p

n

)

anbp−n ≡ ap +

p−1
∑

n=1

(
p

n

)

︸︷︷︸

≡0

anbp−n + bp ≡ ap + bp mod n.

2. (10 pts) Let f : A → B be a function. Prove that f is onto if and only h ◦ f = k ◦ f implies
h = k, for every set C and all choices of functions h, k : B → C.

Suppose f is onto. Let C be any nonempty set and h, k : B → C where C such that
h ◦ f = k ◦ f . This means that for any h ◦ f(a) = k ◦ f(a) for all a ∈ A. Let b be any element
in B. Since f is onto, there exists some a ∈ A such that f(a) = b. Then

h(b) = h ◦ f(a) = k ◦ f(a) = k(b).

Since this can be done for any b ∈ B, h = k.
Conversely, suppose f is not onto. Then there exists a b ∈ B such that f(a) 6= b for any

a ∈ A. Let C = {0, 1} and define h, k : B → C by

h(x) = 0 and k(x) =

{

0 x 6= b

1 x = b

Now observe that h ◦ f(a) = 0 for all a ∈ A. Also k ◦ f(a) = 0 for all a ∈ A since f(a) 6= b.
Therefore h ◦ f = k ◦ f . But h 6= k. So it is not true that h ◦ f = k ◦ f implies h = k, for
every set C and all choices of functions h, k : B → C.



3. (10 pts) Let G = {x ∈ R | x > 0 and x 6= 1}. Define the operation ∗ on G by a ∗ b = aln(b),
for all a, b ∈ G. Prove that G is an abelian group under the operation ∗.

Notice that a ∗ b = aln(b) = eln(a) ln(b). Let a, b ∈ G. Then

a, b > 0 =⇒ ln(a), ln(b) ∈ R =⇒ a ∗ b = eln(a) ln(b) ∈ R.

Also

a, b 6= 1 =⇒ ln(a), ln(b) 6= 0 =⇒ ln(a) ln(b) 6= 0 =⇒ a ∗ b 6= e0 = 1.

Therefore G is closed under ∗.
If a, b ∈ G, then

a ∗ b = eln(a) ln(b) = eln(b) ln(a) = b ∗ a.

Hence ∗ is commutative.
If a, b, c ∈ G, then

(a ∗ b) ∗ c = e(ln(a) ln(b)) ln(c) = eln(a)(ln(b) ln(c)) = a ∗ (b ∗ c).

Hence ∗ is associative.
If a ∈ G, then e ∗ a = eln(a) = a and a ∗ e = a follows by commutativity. Hence e, which

is obviously in G, is an identity for ∗.
If a ∈ G, then ln(a) ∈ R∗. Therefore 1/ ln(a) ∈ R

∗. Hence b = e1/ ln(a) ∈ R \ {1}. Notice
that

a ∗ b = eln(a) ln(b) = e
ln(a) 1

ln(a) = e1 = e

and b ∗ a = e follows by commutativity. Hence b is an inverse of a in G. This can be done
for any a ∈ G, therefore every element in G has an inverse.

We can now conclude that G is an abelian group under ∗.

4. (10 pts) Let G be a group. Prove that G is abelian if and only if (ab)−1 = a−1b−1 for all
a, b ∈ G.

Suppose G is abelian. Let a, b ∈ G. Then (ab)−1 = b−1a−1 = a−1b−1.
Conversely, suppose (ab)−1 = a−1b−1 for all a, b ∈ G. We want to prove xy = yx for all

x, y ∈ G. So let x, y ∈ G and set a = x−1 and b = y−1. Then x = a−1, y = b−1, and

xy = a−1b−1 = (ab)−1 = b−1a−1 = yx.

5. (10 pts) Let a, b ∈ Z not both 0. Prove that a and b have a greatest common divisor d and
d is the smallest positive linear combination of a and b.

See the proof of Theorem 1.1.6 in your textbook.

6. (10 pts) Let a, n ∈ Z with n > 1. Prove that there exists b ∈ Z such that ab ≡ 1 mod n if
and only if a and n are relatively prime.

See the proof of Proposition 1.4.5(a) in your textbook.

7. (2 pts each) Let σ ∈ S9 be

σ =

(
1 2 3 4 5 6 7 8 9
8 5 2 9 3 6 4 1 7

)

.

(a) Write σ as a product of independent cycles.

σ = (1 8)(2 5 3)(4 9 7)



(b) Write σ as a product of transpositions.

σ = (1 8)(2 5)(5 3)(4 9)(9 7)

(c) Find σ−1 as a product of independent cycles.

σ−1 =
(
(1 8)(2 5 3)(4 9 7)

)−1
= (1 8)(2 3 5)(4 7 9)

(d) Find σ−1 as a product of transpositions.

σ−1 =
(
(1 8)(2 5)(5 3)(4 9)(9 7)

)−1
= (9 7)(4 9)(5 3)(2 5)(1 8)

(e) Find the order of σ.

By Prop 2.3.8,
|σ| = lcm(2, 3, 3) = 6.

8. (10 pts)
(a) Define what a subgroup is.

See Definition 3.2.1.

Note that 3.2.2 is a proposition, not a definition, so stating that is not a correct answer.

(b) Prove or disprove: the set H = {σ ∈ S5 | σ(1) = 5} is a subgroup of S5.

H fails to be a subgroup in just about every way it can. For one, () 6∈ H because the
identity does not send 1 to 5. For two, (1 5 2) ∈ H but (1 5 2)2 = (1 2 5) 6∈ H, so H is
not closed under composition. Finally, (1 5 2) ∈ H but (1 5 2)−1 = (1 2 5) 6∈ H so not
every element in H has an inverse.

9. Extra credit problem. Let

An = {σ ∈ Sn | σ is even}.

(a) (4 pts) Find the elements of A4.

S4 has five kinds of elements: the identity, 2-cycles, 3-cycles, 4-cycles, and elements of
the form (12)(34). We know that () is even, 3-cycles are even, and elements of the form
(12)(34) are even. So these are in A4. On the other hand, 2-cycles and 4-cycles are odd,
so these are not in A4. Hence

A4 = {(), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3),

(1 2 3), (1 3 2), (1 2 4), (1 4 2), (1 3 4), (1 4 3), (2 3 4), (2 4 3)}.

(b) (8 pts) Prove that An is a subgroup of Sn.

An certainly contains the identity (). Let σ, τ ∈ An. Then

σ = σ1σ2 · · ·σm

τ = τ1τ2 · · · τn

where the σi and τj are transpositions and m, n are even. Hence

στ = σ1σ2 · · ·σmτ1τ2 · · · τn.



This shows that στ can be written as a product of m+n transpositions. Since m, n are
even, so is m + n. Therefore στ ∈ An. Hence An is closed under composition. Also

σ−1 = (σ1σ2 · · ·σm)−1 = σ−1
m σ−1

m−1 · · ·σ
−1
1 = σmσm−1 · · ·σ1,

which shows that σ−1 is a product of m transpositions. Hence σ−1 ∈ An. Therefore An

is a subgroup of Sn (by Prop 3.2.2).

(c) (8 pts) Prove that |An| = |Sn|/2. (Hint: set up a one-to-one correspondence between
An and Sn \ An.)

Let f : An → Sn \ An be the map f(σ) = σ(1 2). First, notice that f is really a map
from An to Sn \ An. This is because if σ ∈ An, then σ is a product of an even number
of transpositions and hence σ(1 2) is a product of an odd number of transpositions.
Similarly, define g : Sn \ An → An by g(σ) = σ(12) and observe that g is indeed a map
from Sn \An to An. Finally, it is clear that gf = 1An

and fg = 1Sn\An
. Therefore f is a

one-to-one correspondence from An → Sn \An. So An has the same number of elements
as its complement. Therefore |An| = |Sn|/2.


