MATH 521 A ExaM 1 SOLUTIONS
Oct 5, 2011

1. (5 pts) Let a, b, ¢ be integers. Show that if bja and bt ¢ then b1 (a + ¢).

Let bla. We will prove the contrapositive: if b|(a + ¢) then ble. Since bla and b|(a + ¢),
there exist m,n € Z such that a = mb and a + ¢ = nb. Hence

c=(c+a)—a=nb—mb=(n—m)b.

Since m,n € Z, n —m € Z. So blc.

2. (10 pts) Perhaps a more natural definition of the greatest common divisor is the following:

Definition 1. Let a and b be integers, not both 0. An integer d is called the greatest
common divisor of a and b if
(a) d|a and d|b,
(b) c|a and ¢|b implies d > c.
Show that this definition is equivalent to

Definition 1.1.5. Let a and b be integers, not both 0. An integer d > 0 is called the
greatest common divisor of a and b if

(a) d|a and d|b,

(b) c|a and ¢|b implies c¢|d.

Suppose d;j satisfies Definition 1 and ds satisfies Definition 1.1.5. We will prove that
dy = ds.

First, observe that d; > 0 because 1|a and 1|b implies 1 < d;. Since d;|a and di|b, by
Definition 1.1.5(b), dq|d2. Hence dy = nd; for some n € Z. Since d; and dy are both positive,
so is n. Also, since dz|a and da|b, by Definition 1(b), da < d;y. So

dy <ndy =dz < dj.

Hence the <’s are equalities, and d; = do.

3. (10 pts) Prove that there exist infinitely many prime numbers of the form 4m + 3, where
m € Z.

This can be shown similarly to Euclid’s proof of the infinitude of primes. Suppose there
are finitely many such primes p1,...,pg. Let a = 4p; ---px — 1. Then p;  a. This is because
pila + 1 so if p;|a then p;|(a + 1) —a = 1. Now, a is of the form 4m + 3. Since a # p; for
any 4, a cannot be prime. Then a must have some prime factor. Obviously, a is odd. So its
only prime factors must be of the form 4m + 1, that is congruent to 1 modulo 4. But the
product of numbers congruent to 1 modulo 4 is also 1 modulo 4. Hence no such product can
be equal to a. Now, we have a contradiction.

4. (10 pts) Let p € Z*. Prove that p is prime if and only if it satisfies the following property:
for all a,b € Z if p|ab then either p|a or pl|b.

See Lemma 1.2.5 in your textbook.

5. Let n € Z+.
(a) (3 pts) State the definition of a zero divisor in Z,.

An element [a] of Z, is a zero divisor if [a][b] = [0] for some nonzero congruence class
[b] of Zy,.



(b)

()

(2 pts) Choose an n € Z* such that Z,, has a zero divisor and give an example of a zero
divisor in this Z,. Be sure to justify your example.

In Z4, [2][2] = [0]. Hence [2] is a zero divisor in Zj.

(10 pts) Let n € Z* and a € Z. Prove that [a] is a zero divisor in Z, if and only if n
and a are not relatively prime. Obviously, you are not allowed to use Proposition 1.4.5
or its variant which we gave in class, because they say exactly this.

Suppose that ged(a,n) =d > 1. Let b=n/d. Then b€ Z and 1 < b < n. So [b] # [0].
Now
b=a" =2
U T
Since a/d € Z, n|ab. Hence [a][b] = [0].
Suppose that ged(a,n) = 1. Then 1 = sa + tn for some b, c € Z. Hence [s][a] = [sa] =
[1 —tn] = [1]. If [a][b] = [0], then

[0] = [s][0] = [s]([a][b])

So [a] cannot be a zero divisor.
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6. (10 pts) Extra credit problem. Let n € Z™.

(a)

Prove that if for some a € Z, the congruence equation 22 = a (mod n) has more than

two distinct solutions, then Z, contains at least one nonzero equivalence class [b] which
does not have a multiplicative inverse.

Let a be such that 22 = a (mod n) has more than two distinct solutions. Let by, by, b3
be distinct solutions. Then
¥=a=bi (modn) = (by+by)(by —bo)=b7—b3=0 (mod n).

Since b; and by are distinct by — by Z 0 (mod n). Now there are two possibilities. If
by + b2 # 0 (mod n), then [b; + bz] # [0] and is a zero divisor. Hence it cannot have a
multiplicative inverse (by Proposition 1.4.5(b)) and we are done.

If by + b2 =0 (mod n), then we consider by + bs. If by + b+ 3 =0 (mod n) then

by +by=b1 +b3 (modn) = by =bs (mod n).
But we know this is not the case. So b; + b3 # 0 (mod n). But
¥=a=b: (modn) = (by+b3)(by —b3)=b7—b2=0 (mod n).

Since by — bg # 0 (mod n) either, [b; + b3] # [0] is a zero divisor. Hence it cannot have
a multiplicative inverse.

Is the converse of the statement in (a) true? If so, prove it. If not, give a counterexample.

The converse is false. Z4 contains the zero divisor [2] since [2][2] = [0]. But no congruence
equation of the form 22 = a (mod n) has more than two solutions in Zj:

22 = (mod 4) has solutions z = 0 and z = 2,
22 =1 (mod 4) has solutions z = 1 and = = 3,
22 =2 (mod 4) has no solutions,
2> =3 (mod 4) has no solutions.



