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1. (10 pts) Prove that (1 2 3 4) is not a product of 3-cycles.

Note that a 3-cycle (a b c) can be written as a product of two transpositions. For example,
(a b c) = (a b)(b c). Hence any 3-cycle is even. On the other hand, (1 2 3 4) = (1 2)(2 3)(3 4),
which shows it is odd. Any product of even permutations must be even, hence (1 2 3 4) cannot
be a product of 3-cycles.

2. (10 pts) Let H = {β ∈ S5 | β(1) = 1 and β(3) = 3}. Prove that H is a subgroup of S5. Is
your argument valid when 5 is replaced by any n ≥ 3?

Clearly H ⊆ S5. Note Id ∈ H as Id(1) = 1 and Id(3) = 3. Suppose α, β ∈ H. Then

αβ(1) = α(β(1)) = α(1) = 1.

Similarly, αβ(3) = 3. Hence αβ ∈ H. Also,

α−1(1) = α−1(α(1)) = Id(1) = 1.

Similarly, α−1(3) = 3. Therefore H is a subgroup of S5 by the Two-Step Subgroup Test.
The above argument works fine with any other n ≥ 3 as it uses nothing special about S5.

3. (10 pts) If β ∈ S7 and |β3| = 7, prove that |β| = 7.

Let n = |β|. Since |β3| = 7, we know β21 = (). Therefore n|21. Clearly n 6= 1, 3, otherwise
β3 = () and |β3| would be 1. But n cannot be 21 either. To have order 21, the least common
multiple of the lengths of the disjoint cycles of β would have to be 21. Therefore at least one
of them would have be divisible by 7, and one of them (possibly the same one) would have
be divisible by 3. This is impossible since the sum of the lengths cannot be more than 7 in
S7. Thus |β| = 7.

4. (10 pts) Prove that every element of Sn (n ≥ 2) can be written as a product of transpositions.

First, let σ = (x1 x2 . . . xk) be a cycle of length at least 2. Then

σ = (x1 x2)(x2 x3) · · · (xk−1 xk).

You can verify this by direct computation.
Now for a general non-identity element σ, just write it first as a product of disjoint cy-

cles (we proved in class this can always be done), then write each cycle as a product of
transpositions as above. This gives σ as a product of transpositions.

If σ = (), you can think of it a product of 0 transpositions, or if you don’t like that, write
() = (1 2)(1 2).

NB: This proof does not actually use that the cycles are disjoint. The only reason to write
σ as a product of disjoint cycles first is because we have a theorem that says this is always
possible. In fact, any cycles would be good enough for our purpose here.

5. (10 pts)
(a) Write

(
1 2 3 4 5 6 7
4 7 5 1 3 2 6

)



in disjoint cycle notation.

(
1 2 3 4 5 6 7
4 7 5 1 3 2 6

)

= (1 4)(2 7 6)(3 5).

(b) Write (1 6 4 3)(6 2 5 3)(1 5) as a product of disjoint cycles.

(1 6 4 3)(6 2 5 3)(1 5) = (2 5 6)(3 4).

(c) Write (1 6 4 3)(6 2 5 3)(1 5) as a product of transpositions. Is it even or odd?

One possibility is to use the same idea as in problem 4 on each cycle:

(1 6 4 3)(6 2 5 3)(1 5) = (1 6)(6 4)(4 3)(6 2)(2 5)(5 3)(1 5).

This has 7 transpositions, so the permutation is odd.

(d) If σ = (1 6 4 3)(6 2 5 3)(1 5), what is σ2007?

We use the fact that disjoint cycles commute and that the order of an n-cycle is n:

σ2007 = ((2 5 6)(3 4))2007 = (2 5 6)2007(3 4)2007 = ()(3 4) = (3 4).

6. (10 pts) Find the number of elements of order 6 in S5.

To have order 6, the lengths of the disjoint cycles of the permutation must have 6 for
the their least common multiple. Their sum cannot be more than 5 either. So the only
possibility is that there are two disjoint cycles, one of length 3 and another of length 2. That
is σ = (a b c)(d e). There are 5 choices for a, 4 for b, 3 for c, 2 for d, and only 1 for e. This
would give us 5! choices. But (a b c) = (b c a) = (c a b) and (d e) = (e d), so 6 different choices
will give the same permutation. Hence the number of elements of order 6 in S5 is 5!/6 = 20.

7. (15 pts) Extra credit problem.

(a) Let α, β ∈ Sn such that α = (a1 a2 . . . ak). Prove that

βαβ−1 = (β(a1) β(a2) . . . β(ak)).

Let x ∈ {1, 2, . . . , n}. If x = β(ai) for some 1 ≤ i < k. Then

βαβ−1(x) = βαβ−1(β(ai)) = βα(ai) = β(ai+1).

which is exactly where the cycle (β(a1) β(a2) . . . β(ak)) maps x.
The same argument shows that

βαβ−1(β(ak)) = β(a1)

as it should be.
Finally, let x 6∈ {β(a1), β(a2), . . . , β(ak)}. Then β−1(x) 6∈ {a1, a2, . . . , ak}. Therefore α
leaves β−1(x) fixed. That is α(β−1(x)) = β−1(x). So

βαβ−1(x) = β(β−1(x)) = x.

In this case, the cycle (β(a1) β(a2) . . . β(ak)) would also leave x fixed.
So βαβ−1 permutes the elements of {1, 2, . . . , n} exactly the same way as the cycle
(β(a1) β(a2) . . . β(ak)) does. Therefore they must be equal.

(b) Use your result from part (a) to write (2 1 5)(3 1 2 4)(2 5 1) as a single cycle.



Note that (2 5 1) = (2 1 5)−1 and (2 5 1) sends 1 to 2 and 2 to 5. So

(2 1 5)(3 1 2 4)(2 5 1) = (2 1 5)(3 1 2 4)(2 1 5)−1 = (3 5 1 4)

by the result in part (a).

(c) Use your result from part (a) to prove the following theorem: If α, β ∈ Sn, then βαβ−1

is the permutation we get by writing down α in cycle notation and applying β to each
entry. (Note this is more general than the statement in part (a) because we are not
assuming α to be a cycle.)

Let α ∈ Sn. Suppose α = α1α2 · · ·αk where α1, α2, . . . , αk are cycles. Then

βαβ−1 = βα1α2 · · ·αkβ
−1

= βα1(β
−1β

︸ ︷︷ ︸

Id

)α2(β
−1β

︸ ︷︷ ︸

Id

) · · · (β−1β
︸ ︷︷ ︸

Id

)αkβ
−1

= (βα1β
−1)(βα2β

−1) · · · (βαkβ
−1)

By part (a), (βαiβ
−1) is just the cycle αi with β applied to each entry. This shows that

βαβ−1 is α with β applied to each entry in each cycle of α.


