1. (10 pts) Prove or disprove that U(20) and U(24) are isomorphic.

They are not isomorphic. First, look at the elements of U(24):

 $U(24) = \{\overline{1}, \overline{5}, \overline{7}, \overline{11}, \overline{13}, \overline{17}, \overline{19}, \overline{23}\}.$

Notice that

$$|\overline{1}| = 1$$

 $|\overline{5}| = |\overline{7}| = |\overline{11}| = |\overline{13}| = |\overline{17}| = |\overline{19}| = |\overline{23}| = 2$

On the other hand, $\overline{3}$ is an element of U(20) whose order is 4. If there were an isomorphism $\sigma: U(20) \to U(24)$, it would have to send $\overline{3}$ to an element of order 4 in U(24). But there is no such element, so no such isomorphism can exist.

2. (10 pts) Find $\operatorname{Aut}(\mathbb{Z})$.

Let $\sigma \in \operatorname{Aut}(\mathbb{Z})$. Note that \mathbb{Z} is a cyclic group. Any isomorphism from a cyclic group to a cyclic group has to map generators to generators (see Theorem 6.2.4). We know that \mathbb{Z} is cyclic and has two generators, 1 and -1. So $\sigma(1) = \pm 1$. If $n \in \mathbb{Z}$, then $n = n \cdot 1$ and

$$\sigma(n) = \sigma(n \cdot 1) = n\sigma(1)$$

(by Theorem 6.2.2). If $\sigma(1) = 1$, this gives $\sigma(n) = n$, which is $\mathrm{Id}_{\mathbb{Z}}$. Obviously, this is an automorphism. If $\sigma(1) = -1$, then $\sigma(n) = -n$. In fact, $\sigma(\sigma(n)) = -(-n) = n$ for all $n \in \mathbb{Z}$, so σ is its own inverse, and therefore a one-to-one correspondence. Finally,

 $\sigma(n+k) = -(n+k) = -n - k = \sigma(n) + \sigma(k)$

which shows that σ is operation preserving.

Hence $\operatorname{Aut}(\mathbb{Z}) = {\operatorname{Id}_{\mathbb{Z}}, \sigma}$, where σ is the map $n \mapsto -n$.

3. (10 pts) Let G be a group. Prove that the mapping $\alpha(g) = g^{-1}$ is an automorphism if and only if G is abelian.

First, notice that $\alpha(\alpha(g)) = (g^{-1})^{-1} = g$. Hence $\alpha \circ \alpha = \mathrm{Id}_G$. This immediately gives that α is a one-to-one correspondence. So the only property in question is if α is operation preserving. In fact,

$$\begin{aligned} \alpha(gh) &= (gh)^{-1} = h^{-1}g^{-1} \\ \alpha(g)\alpha(h) &= g^{-1}h^{-1}. \end{aligned}$$

If G is abelian, then

$$h^{-1}g^{-1} = g^{-1}h^{-1} \implies \alpha(gh) = \alpha(g)\alpha(h)$$

Since this is true for all $g, h \in G$, α is an automorphism. Conversely, if α is an automorphism, then for all $g, h \in G$

$$\begin{split} \alpha(gh) &= \alpha(g)\alpha(h) \implies \\ h^{-1}g^{-1} &= g^{-1}h^{-1} \implies \\ (h^{-1}g^{-1})^{-1} &= (g^{-1}h^{-1})^{-1} \implies \\ gh &= hg. \end{split}$$

Hence G is abelian.

By the way, we proved in problem 2 that this map is an automorphism in the special case of the abelian group \mathbb{Z} .

4. (20 pts)

(a) State Cayley's Theorem.

Every group is isomorphic to a group of permutations.

(b) We proved Cayley's Theorem by constructing the map $\phi(g) = T_q$ from a group G to Sym(G), where $T_g: G \to G$ is defined by $T_g(x) = gx$. Prove that T_g is a permutation.

Notice that T_g has an obvious inverse in $T_{q^{-1}}$. Indeed

$$\begin{split} T_{g^{-1}}T_g(x) &= T_{g^{-1}}(gx) = g^{-1}gx = x \\ T_gT_{g^{-1}}(x) &= T_g(g^{-1}x) = gg^{-1}x = x \end{split}$$

for all $x \in G$. Hence $T_{q^{-1}}T_g = T_g T_{q^{-1}} = \mathrm{Id}_G$. Therefore T_g is a one-to-one correspondence.

(c) Prove that the map ϕ defined in part (b) is operation preserving (i.e. it is a homomorphism).

Let $g, h \in G$. Then

$$T_g T_h(x) = g(hx) = (gh)x = T_{gh}(x)$$

for all $x \in G$. So

$$\phi(gh) = T_{gh} = T_g T_h = \phi(g)\phi(h).$$

5. (10 pts) Let $G = S_3$ and $H = \{(), (23)\}$. Find the left and the right cosets of H in G.

The three left cosets are

$$H = \{(), (23)\} = (23)H$$

(12)H = {(12), (123)} = (123)H
(13)H = {(13), (132)} = (132)H.

The three right cosets are

$$H = \{(), (23)\} = H(23)$$
$$H(12) = \{(12), (132)\} = H(132)$$
$$H(13) = \{(13), (123)\} = H(123)$$

- 6. (15 pts) **Extra credit problem.** Let G be a group and $H \subseteq G$ a subgroup. Let $\alpha : G \to G$ be the map $\alpha(g) = g^{-1}$. (You have already met this map today in problem 3.)
 - (a) Prove that α maps left cosets of H to right cosets of H and vice versa. That is for all $a \in G$, $\alpha(xH) = Hy$ for some $y \in G$. And for all $x \in G$, $\alpha(Hx) = yH$ for some $y \in G$.

Notice that $\alpha(xh) = (xh)^{-1} = h^{-1}x^{-1}$. Since $h^{-1} \in H$, $\alpha(xh) \in Hx^{-1}$. Also, $\alpha(hx^{-1}) = (hx^{-1})^{-1} = xh^{-1}$. Since $h^{-1} \in H$, $\alpha(hx^{-1}) \in xH$. We have just shown $\alpha(xH) = Hx^{-1}.$

A symmetric argument shows that $\alpha(Hx) = x^{-1}H$.

(b) Let L be the set of left cosets of H in G and R be the set of right cosets of H in G. That is

$$L = \{gH|g \in G\}$$
$$R = \{Hg|g \in G\}.$$

Prove that the map $\sigma: L \to R$ defined by $\sigma(xH) = \alpha(xH)$ is a one-to-one correspondence.

Notice that what we proved in part (a) is that σ is indeed a map $L \to R$. Similarly, we can define $\phi : R \to L$ by letting $\phi(Hx) = \alpha(Hx)$. We will now show that σ and ϕ are inverses. For any $x \in G$,

$$\sigma\phi(Hx) = \alpha(\alpha(Hx)) = \alpha(x^{-1}H) = Hx$$

$$\phi\sigma(xH) = \alpha(\alpha(xH)) = \alpha(Hx^{-1}) = xH.$$

This shows $\sigma \phi = \mathrm{Id}_R$ and $\phi \sigma = \mathrm{Id}_L$. Hence σ is a one-to-one correspondence.

(c) What is the inverse of the map σ defined in part (b)?

It is $\phi: R \to L$ defined by $\phi(Hx) = \alpha(Hx)$. See part (b) for the proof.