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1. (10 pts) Let a and b be non-identity elements of different orders in a group G of order 155.
Prove that the only subgroup of G that contains a and b is G itself.

Here is the first of two slightly different proofs:
By Lagrange’s Theorem, |a| and |b| divide |G|. Since a and b are non-identity elements,

|a|, |b| > 1. So the orders of a and b are 5, 31, or 155.
Let H be any subgroup that contains a and b. Obviously, |H| ≤ |G| = 155. If a or b

has order 155, then 155 | |H|, since the order of an element divides the order of the group.
Therefore |H| = 155 and H = G.

Otherwise, |a| = 5, |b| = 31 or |a| = 31, |b| = 5. So 5, 31 | |H|. Hence |H| is divisible by
gcd(5, 31) = 155. Therefore |H| = 155 and H = G.

Here is the other:
Let H be a subgroup such that a, b ∈ H. By Lagrange’s theorem, |H| | |G|, so |H| is 1, 5,

31, or 155. But |H| 6= 1 because H contains non-identity elements a and b.
If |H| = 5, then any non-identity element in H must have order 5. This contradicts the

requirement that a and b have different orders.
The same argument shows that |H| 6= 31. Hence |H| = 155 is the only remaining possibility

and then H = G.

2. (10 pts) Prove that every subgroup of Dn whose order is odd is cyclic.

Remember that the two kinds of elements in Dn are rotations and reflections.
Let H be such a subgroup. Since |H| is odd, H cannot contain an element of order 2. But

every reflection has order 2. So H can only contain rotations. Therefore H is a subgroup of
Cn, which is a cyclic group. Any subgroup of a cyclic group is cyclic, so H must be cyclic.

3. (10 pts) If H is a normal subgroup of G and |H| = 2, prove that H is contained in the center
of G.

So H must contain two elements. One of these is the identity e. Let us call the other one
h. Since e obviously commutes with everything in G, we need to show that h does too.

Let g ∈ G. Then gH = Hg by normality. Hence gh ∈ gH = Hg = {g, hg}. If gh = g then
h = e by cancellation. But we know h 6= e. So gh = hg. This is true for any g, hence h is
central.

4. (15 pts)
(a) Let G be a group and H a subgroup of G. For a, b ∈ G, define a ∼ b if Ha = Hb. Prove

that ∼ is an equivalence relation on G.

Reflexivity: Obviously, Ha = Ha for all a, hence a ∼ a.

Symmetry: Suppose a ∼ b. Then Ha = Hb. Hence Hb = Ha and then b ∼ a.

Transitivity: Suppose a ∼ b and b ∼ c. Then Ha = Hb and Hb = Hc. Hence
Ha = Hc and then a ∼ c.

Notice that this all comes down to the fact that equality of sets is an equivalence relation.



(b) Show that the right cosets of H form a partition of G.

We will do this by showing that the right cosets are exactly the equivalence classes of
∼. Since we know that equivalence classes partition the set, this will do the job.
Let a ∈ G. Its equivalence class under ∼ is [a] = {b ∈ G|b ∼ a}. We want to show
[a] = Ha.
Let b ∈ [a]. Then b ∼ a, so Hb = Ha. Since b ∈ Hb, b ∈ Ha. Therefore [a] ⊆ Ha.
Now, let b ∈ Ha. Then b = ha for some h ∈ H. We showed in class that left mul-
tiplication by a fixed element h is a permutation H → H. By the same logic, right
multiplication by h is also a permutation H → H. Therefore Hh = H. Hence

Hb = H(ha) = (Hh)a = Ha.

This shows b ∼ a and b ∈ [a]. So Ha ⊆ [a].

5. (15 pts)
(a) Let G be a group and H ⊆ G a subgroup. Prove that if [G : H] = 2, then H is normal

in G.

If [G : H] = 2 then H has exactly two left cosets and two right cosets. One of the left
cosets is H itself. Since the cosets partition G, the other left coset must be G \H. The
same thing can be said about the right cosets. So the two left and the right cosets are
the same: H and G \ H. Therefore H is normal.

(b) Is the statement in part (a) true if 2 is replaced by p, where p is any prime? That is, if
[G : H] = p for some prime p, does H have to be normal in G?

This is not true. For example, [S3 : {(), (1 2)}] = 3, which is prime. But we saw in class
that {(), (1 2)} is not normal in S3.

6. (15 pts) Extra credit problem. In this problem, you will explore an alternate way to
define quotient groups.

Let G be a group. For two subsets S, T ⊆ G, define the product of S and T as

ST = {st | s ∈ S, t ∈ T}.

(a) Now, let H be a subgroup of G and K and N two left cosets of H in G. We can multiply
K and N as sets using the above definition. Notice that here we don’t have to worry if
multiplication is well defined. But the result may not be a left coset.
Prove that if H is normal in G and K and N are left cosets of H, then KN is also a
left coset of H.

Since K and N are left cosets, K = aH and N = bH for some a, b ∈ G. First observe
that

HH = {xy | x ∈ H, y ∈ H} ⊆ H

by closure. Since e ∈ H, eH ⊆ HH. But eH = H. Therefore HH = H.
If K and N are left cosets, then K = aH and N = bH for some a, b ∈ G. Now

KN = (aH)(bH) = (aH)(Hb) = a HH
︸︷︷︸

H

b = aHb = a(Hb) = a(bH) = (ab)H,

which is indeed a left coset of H.



Notice that the result of multiplying aH and bH is exactly what you would expect. In
fact, this definition gives the same multiplication on the cosets as the definition we gave
in class.

(b) Let G = S3 and H = {(), (1 2)}. Show that the product of two left cosets of H need not
be a left coset. (Actually, if you prefer to do this with right cosets instead, feel free.)

Take for example the left cosets K = (1 3)H = {(1 3), (1 2 3)} and N = (2 3)H =
{(2 3), (1 3 2)}. Then

KN = {(1 3), (1 2 3)}{(2 3), (1 3 2)}

= {(1 3 2), (2 3), (1 2), ()},

which obviously cannot be a left coset of H because it has two many elements.


