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1. (10 pts) A card-shuffling machine always rearranges cards in the same way relative to the
order in which they were given to it. All of the hearts arranged in order from ace to king
were put into the machine, and then the shuffled cards were put into the machine again to
be shuffled. If the cards emerged in the order 10, 9, Q, 8, K, 3, 4, A, 5, J, 6, 2, 7, in what
order were the cards after the first shuffle?

Let α be the permutation which gives the order of the cards after they go through the
machine once. For convenience, number the cards A through K by 1 through 13. Then we
have that

α2 = (1, 10, 11, 6, 3, 12, 2, 9, 5, 13, 7, 4, 8).

Since this is a 13-cycle, α26 = (α2)13 = (). Hence |α| divides 26. It cannot be 1 or 2 because
α2 6= (). It cannot be 26 either because there are only 13 cards to shuffle and S13 has no
element of order 26. This is because the disjoint cycle representation of an element of order
26 must have at least one cycle whose length is divisible by 2, and at least one cycle (possibly
the same) whose length is divisible by 13. But 13 objects are not enough to have a disjoint
2-cycle and 13-cycle, or a 26-cycle. Hence |α| = 13.

Then

α = α14 = (α2)7 = (1, 9, 10, 5, 11, 13, 6, 7, 3, 4, 12, 8, 2).

After the first shuffle, the cards come out in the order 9, A, 4, Q, J, 7, 3, 2, 10, 5, K, 8, 6.

2. (10 pts) Let φ be an automorphism from G to G. Prove that if K is a subgroup of G, then
φ(K) = {φ(k) | k ∈ K} is a subgroup of G.

First notice that e = φ(e) ∈ φ(K). Now let a, b ∈ φ(K). Then there exist x, y ∈ K such
that a = φ(x) and b = φ(y). Since K is a subgroup, xy−1 ∈ K, and hence

ab−1 = φ(x)φ(y)−1 = φ(xy−1) ∈ φ(K).

Therefore φ(K) is a subgroup by the One-Step Subgroup Test.

Note that the only property of φ we needed for this proof is that it is operation preserving.
Therefore the statement and the proof remain valid for any homomorphism φ : G → G.

3. (10 pts) Let G be a finite abelian group and let n be a positive integer that is relatively
prime to |G|. Show that the mapping a 7→ an is an automorphism of G.

Let a, b ∈ G. Then

φ(ab) = (ab)n = (ab)(ab) · · · (ab) = anbn = φ(a)φ(b)

where we used the commutativity of G to move all the a’s to the left and all the b’s to the
right. Hence φ is operation preserving.

Since gcd(|G|, n) = 1, there exist s, t ∈ Z such that s|G| + tn = 1. Let σ : G → G be the

map a 7→ at. Recall that a|G| = e for all a ∈ G because the order of a divides |G|. Hence

a = as|G|+tn = (a|G|)satn = atn.



It follows that

σφ(a) = (an)t = ant = a

φσ(a) = (at)n = ant = a.

Hence φ and σ are inverses. So φ is a one-to-one correspondence.

Here is an alternate way to prove that φ is a one-to-one correspondence.
Suppose φ(a) = φ(b). Then

e = φ(a)φ(b)−1 = φ(ab−1) = (ab−1)n.

Therefore |ab−1| divides n. Since ab−1 ∈ G, its order must also divide |G|. But n and |G|
are relatively prime, so |ab−1| must be 1. Therefore ab−1 = e and hence a = b. This shows
φ is one-to-one. Since G is finite, this also implies φ is onto by Exercise 5.10.

4. (10 pts) Choose one of the following two problems to solve.
(a) Determine Aut(Z2 ⊕ Z2). (Here ⊕ stands for the external direct product.)

Let σ ∈ Aut(Z2 ⊕ Z2). Then σ(0, 0) = (0, 0). So σ must permute the three nonidentity
elements (1, 0), (0, 1), (1, 1) among themselves. The question is which of the 6 possible
permutations are operation preserving. We will show that they all are.
Let σ ∈ Sym(Z2 ⊕Z2) such that σ(0, 0) = (0, 0). For σ to be an automorphism, it must
satisfy

σ(x + y) = σ(x) + σ(y)

for any x, y ∈ Z2 ⊕ Z2. Certainly, if either x or y is the identity, the equality holds. So
the interesting cases are when x and y are both nonidentity elements.
If x = y, then we have σ(x + x) = σ(x) + σ(x), which will always hold as x + x = (0, 0)
for any element of Z2 ⊕ Z2.
Now, let x and y be two different nonidentity elements of Z2 ⊕ Z2. Notice that x + y
is always the third nonidentity element regardless of how you choose x and y. Since
σ(x) and σ(y) are also two different nonidentity elements of Z2 ⊕Z2, σ(x) + σ(y) is the
third one. Note that σ(x + y) 6= σ(x), σ(y) because σ is one-to-one. Hence σ(x + y) =
σ(x) + σ(y).
We have just shown that σ is operation preserving. So Aut(Z2 ⊕ Z2) has six elements
corresponding to the six permutations on the set {(1, 0), (0, 1), (1, 1)}. In fact, this
makes it clear that Aut(Z2 ⊕ Z2) ∼= S3.

(b) Let G be a finite group and let H be an odd-order subgroup of G of index 2. Show that
the product of all the elements of G (taken in any order) cannot belong to H.

Since [G : H] = 2, H is normal in G (see for example exercise 7.(b) on this exam). So we
can form the quotient group G/H. Let g1g2 · · · gn be a product of all elements in G. If this
product belongs to H, then the coset g1g2 · · · gnH must be equal to H. But

g1g2 · · · gnH = (g1H)(g2H) · · · (gnH).

Each giH must be one of two things: if gi ∈ H, then giH = H, otherwise giH = G \H. But
gi ∈ H for exactly half of the gi because H is half of G. These giH act as the identity in
G/H. The remaining giH are all equal to G \ H, which is an element of order 2 in G \ H.
But there are an odd number of such giH, so when they are multiplied together, the result
is again G \ H. Since g1g2 · · · gnH = G \ H, g1g2 · · · gn 6∈ H.



5. (10 pts) Consider the alternating group A6. If σ ∈ A6, determine all possibilities for |σ|.
Give an example of an element of each possible order.

The solution is very similar to how we listed the orders of the elements of S5 in class, only
we need to be careful to list only even permutations.

We know that a k-cycle is even if and only if k is odd. So A6 will have the identity,
3-cycles, and 5-cycles. These will have orders 1, 3, and 5 respectively.

We can also get even permutations by multiplying two disjoint 2-cycles, a 2-cycle and a
disjoint 4-cycle (the product of two odd permutations is even), or two disjoint 3-cycles (the
product of two even permutations is also even). We know that the order of a permutation is
the lcm of its disjoint cycles. So these last three types have orders 2, 4, and 3 respectively.
This exhausts all the possibilities in A6. Here are the possible orders with examples

order example
1 ()
2 (1 2)(3 4)
3 (1 2 3) or (1 2 3)(4 5 6)
4 (1 2)(3 4 5 6)
5 (1 2 3 4 5)

6. (10 pts) Let G be a finite group. Prove that the order of any element of G divides the order
of G. (This is Lagrange’s Theorem for an element.)

Let g ∈ G. Let H = 〈g〉 be the cyclic subgroup generated by g. Then |H| = |g|. Note that
the left cosets of H partition G and they are all the same size as H. Hence |G| is divisible
by |H| = |g|.

7. (20 pts)
(a) Let G be a group (finite or infinite) and H ⊆ G a subgroup. Define what it means for

H to be normal in G.

H is normal in G if gH = Hg for all g ∈ G, that is each left coset is equal to the
corresponding right coset.

(b) Let G be a group (finite or infinite) and H ⊆ G a subgroup of index 2. Prove that H
must be normal.

Since [G : H] = 2, H has only two cosets. One of these is H itself. Since the cosets
form a partition of G, the other coset must be the complement, G \ H.
Let g ∈ G. If g ∈ H, then gH = H and Hg = H, so gH = Hg. If g 6∈ H, then
gH = G \ H and Hg = G \ H, so gH = Hg in this case too.

(c) Show that An is the only subgroup of Sn of index 2. (Hint: show that any subgroup of
index 2 has to contain all of the even permutations.)

Since An contains exactly half of the permutations in Sn, its index in Sn is 2.
We will now show that An is the only such subgroup. Let H ⊆ Sn be a subgroup of
index 2. H must be normal by part (b). Hence we can form the quotient group Sn/H.
Note that |Sn/H| = [Sn : H] = 2. So there are only two cosets of H, namely H and
Sn \H. Note that the order of Sn \H in Sn/H must be 2. We will first show that H can
contain no transpositions. Notice that all transpositions are conjugates of each other.



For example, if σ = (a b) and φ = (c d) then

σ = ((a c)(b d))φ((a c)(b d))−1.

Since H is normal, it is closed under conjugation. So it either contains all transpositions
or none of them. If H contained all transpositions, then H would have to be all of Sn

since every permutation is a product of transpositions. But H 6= Sn, so none of the
transpositions are in H.
Now let σ be an even permutation. That is σ = σ1σ2 · · ·σk for some transpositions σi

and k is even. Then

σH = (σ1H)(σ2H) · · · (σkH) = (Sn \ H)k,

as each σiH = Sn\H. But |Sn\H| divides k, hence σH = (Sn\H)k = H, which implies
σ ∈ H. We have just shown that every even permutation is in H. That is An ⊆ H.
Since |An| = |H|, this proves H = An.

8. (15 pts) Extra credit problem. Let G be a group and H ⊆ G a subgroup. For a, b ∈ G,
define a ∼ b if ab−1 ∈ H.
(a) Prove that ∼ is an equivalence relation.

Reflexivity: For any a ∈ G, aa−1 = e ∈ H, hence a ∼ a.

Symmetry: Suppose a ∼ b. Then ab−1 ∈ H. Since H is a subgroup, it is closed
under inverses. Hence ba−1 = (ab−1)−1 ∈ H. So b ∼ a.

Transitivity: Suppose a ∼ b and b ∼ c. Then ab−1, bc−1 ∈ H. Since H is a
subgroup, ac−1 = ab−1bc−1 ∈ H. So b ∼ c.

(b) Prove that for all a ∈ G, the equivalence class of a is the right coset Ha.

Notice that

b ∈ [a] ⇐⇒ b ∼ a ⇐⇒ ba−1 ∈ H

⇐⇒ ba−1 = h for some h ∈ H ⇐⇒ b ∈ Ha.

Hence [a] = Ha.

(c) Conclude that the right cosets form a partition of G.

We know that the eqivalence classes of an equivalence relation form a partition. In
part (b), we showed that the right cosets are the equivalence classes of an equivalence
relation. Therefore they must partition G.

9. (15 pts) Extra credit problem. Let G be a group. For g ∈ G, let φg : G → G be
conjugation by g. That is φg(x) = gxg−1. Let T : G → Inn(G) be the map given by
T (g) = φg.
(a) Prove that T is a homomorphism.

First notice that

φgh(x) = (gh)x(gh)−1 = ghxh−1g−1 = g(hxh−1)g−1 = φgφh(x)

for any x ∈ G. This shows φgh = φgφh. But

T (gh) = φgh = φgφh = T (g)T (h).



(b) Prove that ker(T ) = Z(G).

g ∈ ker(T ) ⇐⇒ T (g) = 1G ⇐⇒ gxg−1 = x ∀x ∈ G ⇐⇒ gx = xg ∀x ∈ G.

(c) Conclude that Inn(G) ∼= G/Z(G).

The First Isomorphism Theorem says that im(T ) ∼= G/ ker(T ). The image of T contains
all inner automorphisms by definition. We showed in part (b) that ker(T ) = Z(G).
Hence Inn(G) ∼= G/Z(G).


