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1. (5 pts) Let G and G4 be groups, and let G be the direct product G1 x G3. Let H = {(x1,€) |
x1 € G1} and K = {(e,x2) | z2 € Ga}.
Show that H and K are subgroups of G.
Since e € Gy, (e,e) € H. Now
(z1,€), (y1,e) € H = m1,y1 € G1 = 21y1 € G = (21,€)(y1,€) = (z1y1,€) € H,
and
(z1,e) €EH = 21 €G] = 27" € G = (v1,¢) ' =(27}e) € H.

Therefore H contains the identity and is closed under multiplication and inverses, hence H
is a subgroup of G.
An analogous argument shows K is a subgroup too.

2. (10 pts) Let G be a finite group, and let H and K be subgroups of G. Prove that
_ H||K]

HK| = .
| | |HN K|

Since H and K are finite, so is H N K and we can let n = |H N K|. Define the map

¢: Hx K — HK by ¢(h,k) = hk. Since

HK = {hklh € H,k € K}
¢ is onto. Now let ~ be the relation on H x K defined by (h,k) ~ (h', k") if and only if
o(h,k) = ¢(h',k"). By Theorem 2.2.7, ¢ induces a one-to-one correspondence between the
set of equivalence classes (H x K)/ ~ and HK. We will now show that each equivalence
class has exactly n = |H N K| elements.

Let (h,k) € H x K. We will prove that the equivalence class [(h, k)] has n elements by
constructing a one-to-one correspondence ¢ : H N K — [(h,k)]. For x € H N K, define
¢(z) = (hz,r~ k). First, we verify that ¢(z) € [(h,k)]. Since x € HN K, hx € H and
r 'k € K. So ¢(z) € H x K. Notice

(hz)(z™'k) = h(za™ ")k = hk = é(z) ~ (h, k) = o(z) € [(h,k)].
Now define o : [(h, k)] — HN K by (W, k') = h~'h’. Notice
op(z) =o(hz,z k) =h"the ==
and
po (W K') = p(h7 R = (W(h7 R, (W h))"Lk) = (W', (')~ hk).
But
(W, K'Y € [(h k)] = (hk) ~ (W K) = hk =Wk = (W) 'hk=0""NK =k,
So ¢a (W', k") = (h',k’). This shows ¢ and o are inverses, so ¢ is a one-to-one correspondence
and |[(h, k)]| = |[HN K| =n.

Now, every equivalence class in H x K has n elements, so there are

H x K| _ |H|K]
n |H N K|

equivalence classes and consequently the same number of elements in HK.




Note: This proof is almost the same as the one you all found on the internet. It uses
fancier language and does not rely on listing the elements of H and K, so it works in some
sense even if H or K are infinite. I say in some sense because if H or K is infinite, then
HK is also infinite. But as long as H N K is finite, at least we know that there is an n-to-1
correspondence H x K — HK.

. (10 pts) Let G = R\ {—1}. Define * on G by a*b = a+ b+ ab. Show that G is isomorphic to
the multiplicative group R*. (Hints: It may help to notice that a+b+ab = (a+1)(b+1)—1.
Remember that an isomorphism maps identity to identity. Use this fact to help find the
necessary mapping.)

Notice that 0 is the identity in G. Therefore any isomorphisms ¢ : G — R* has to map 0
to 1. This suggests the idea that perhaps ¢(x) = x + 1 is an isomorphism. First of all, it is
indeed a map G — R*. Second, it has an obvious inverse o : R* — G defined by o(z) = z—1.
This shows ¢ is a one-to-one correspondence. Finally,

blaxh) = (a+b+ab) +1=(a+1)(b+1) = 6(a)p(b)
for all a,b € G. So ¢ is indeed an isomorphism G — R*.

. (10 pts) Let F be any field. Prove that the set of invertible n x n matrices GL,(F) is a
group under matrix multiplication.

First, recall that matrix multiplication is associative. The n x n identity matrix I is its
own inverse, hence I € GL,(F). If A € GL,(F) then A has an inverse A~!. Obviously, A~*
is also an invertible n x n matrix, hence A~! € GL,,(F).

The product of two n x n matrices is also an n x n matrix. If A,B € GL,(F), then
A~! and B™! exist and are n x n matrices, hence B4~ is also an n x n matrix. Since
(AB)(B7'A71) =T and (B~'A71)(AB) = I, AB is invertible. Hence AB € GL,(F).

Therefore GL,(F) is a group.

(a) (3 pts) Define group isomorphism.

See Definition 3.4.1.

(b) (6 pts) Prove that the inverse of an isomorphism ¢ : G — H is also an isomorphism.

See Proposition 3.4.2(a).

(¢) (6 pts) Find two groups of order 6 that are not isomorphic to each other. Be sure to
prove that your two groups are not isomorphic.

Zg and S3 are groups of order 6. Since Zg is abelian and an isomorphism maps an
abelian group to an abelian group (by Prop 3.4.3(b)), Zs cannot be isomorphic to Ss.

. (10 pts) Extra credit problem. An automorphism is an isomorphism of a group to itself,
i.e. an isomorphism ¢ : G — G. One approach to studying an abstract group is to study its
automorphisms, which themselves turn out to form a group under composition. (This should
be easy to see in light of the results we have proved in class.) Find all automorphisms of
Ss. Be sure to prove that you have found all of them. How many different ones are there?
When you count them, make sure they are different from each other. (Hint: You proved on
the HW and on your last quiz that ¢,(z) = aza™! is an isomorphism.)



First, suppose that ¢ is an automorphism of S3. Let z = ¢((1,2)) and y = ¢((13)). Notice
x and y determine all other values of ¢ because

¢(0) =0

¢((123)) = o((13)(12)) = ¢((13))9((12)) = ya
¢((132)) = ¢((12)(13)) = ¢((12))¢((13)) = 2y
$((23)) = o((12)(13)(12)) = ¢((12))6((13))9((12)) = zyx

Since (12) and (13) are both of order 2,  and y must also be of order 2. The only elements
of order 2 in S3 are the three transpositions. Therefore there are 3 choices for x and 2 for y
(remember z # y because ¢ is one-to-one). That leaves only 6 possibilities for ¢.

We will now show that those 6 maps are indeed all isomorphisms. We could do this by
explicitly writing down these 6 maps and verifying that each is an isomorphism. But that
takes a lot of computation: 72 multiplications for each map. So we will take a more clever
approach. By Exercise 3.4.15, the map ¢,(z) = aza™! is an automorphism of S5 for every
a € S3. This immediately gives six candidates of automorphisms, one for each element of
Ss3. But are they really six different maps? We can check that they are by looking at where
they map (12) and (13):
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So indeed, these six isomorphisms all do different things to (12) and (1, 3), so they are the
six possible different automorphisms of Sj.
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Note: Automorphisms of the form ¢,(z) = awza™' are called the inner automorphisms of

a group. Not all automorphisms need to be inner automorphisms. Those that are not are
called outer automorphisms. E.g. Z is an abelian group, so its only inner automorphism is
the identity map (this should be obvious, think about it). But there is also a nontrivial outer
automorphism ¢ : Z — Z defined by ¢(x) = —x, which should be familiar from Exercise
3.4.16.

The automorphisms of any group form a group themselves. The inner automorphisms are
a subgroup of the group of automorphisms. In the case of Ss, the group of automorphisms
is itself isomorphic to Ss. (Try proving this.)



