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1. (10 pts) Let G be a finite group and let H and K be subgroups of G. Prove that

|HK| =
|H||K|

|H ∩ K|
.

Since H and K are finite, so is H ∩ K and we can let n = |H ∩ K|. Define the map
φ : H × K → HK by φ(h, k) = hk. Since

HK = {hk|h ∈ H, k ∈ K}

φ is onto. Now let ∼ be the relation on H × K defined by (h, k) ∼ (h′, k′) if and only if
φ(h, k) = φ(h′, k′). By Theorem 2.2.7, φ induces a one-to-one correspondence between the
set of equivalence classes (H × K)/ ∼ and HK. We will now show that each equivalence
class has exactly n = |H ∩ K| elements.

Let (h, k) ∈ H × K. We will prove that the equivalence class [(h, k)] has n elements by
constructing a one-to-one correspondence φ : H ∩ K → [(h, k)]. For x ∈ H ∩ K, define
φ(x) = (hx, x−1k). First, we verify that φ(x) ∈ [(h, k)]. Since x ∈ H ∩ K, hx ∈ H and
x−1k ∈ K. So φ(x) ∈ H × K. Notice

(hx)(x−1k) = h(xx−1)k = hk =⇒ φ(x) ∼ (h, k) =⇒ φ(x) ∈ [(h, k)].

Now define σ : [(h, k)] → H ∩ K by σ(h′, k′) = h−1h′. Notice

σφ(x) = σ(hx, x−1k) = h−1hx = x

and

φσ(h′, k′) = φ(h−1h′) = (h(h−1h′), (h−1h′)−1k) = (h′, (h′)−1hk).

But

(h′, k′) ∈ [(h, k)] =⇒ (h, k) ∼ (h′, k′) =⇒ hk = h′k′ =⇒ (h′)−1hk = h′−1
h′k′ = k′.

So φσ(h′, k′) = (h′, k′). This shows φ and σ are inverses, so φ is a one-to-one correspondence
and |[(h, k)]| = |H ∩ K| = n.

Now, every equivalence class in H × K has n elements, so there are

|H × K|

n
=

|H||K|

|H ∩ K|

equivalence classes and consequently the same number of elements in HK.

2. (10 pts) Let G be any group and let a be a fixed element of G. Define φa : G → G by
φa(x) = axa−1, for all x ∈ G. Show that φa is an isomorphism.

First, notice that for all x, y ∈ G,

φa(x)φa(y) = axa−1aya−1 = axya−1 = φa(xy).

So φa is a homomorphism. Now for all x ∈ G,

φaφa−1(x) = φa(a
−1xa) = aa−1xaa−1 = x

and

φa−1φa(x) = φa−1(axa−1) = a−1axa−1a = x.

Hence φaφa−1 = φa−1φa = 1G. So φa has an inverse, and hence φa is an isomorphism.



3. (10 pts) Prove that any finite cyclic group with more than two elements has an even number
of distinct generators.

Let G be a finite cyclic group such that |G| > 2. Remember that g ∈ G is a generator of
G iff |g| = |G|. Also, recall that |g| = |g−1|. So g is a generator iff g−1 is a generator. Now
if g is a generator, |g| = |G| > 2, so g 6= g−1. Therefore the generators of G can be listed as
pairs (g, g−1), which shows that there are an even number of them.

4. (10 pts) Prove that the intersection of two normal subgroups is a normal subgroup.

First, we know from the HW (3.2.17) that the intersection of any number of subgroups is
a subgroup. So all we need to show is that if N1 and N2 are normal in G, then N1 ∩ N2 is
normal too. Let n ∈ N1 ∩ N2 and g ∈ G. Since N1 is normal,

n ∈ N1 =⇒ gng−1 ∈ N1.

Similarly, gng−1 ∈ N2. Hence gng−1 ∈ N1 ∩ N2. This shows N1 ∩ N2 is normal.

5. Let G be a group and H a subgroup.
(a) (3 pts) Define what the left cosets of H are.

See Definition 3.8.3.

(b) (10 pts) Let S be the set of left cosets of H. Prove that multiplication on S given by
(aH)(bH) = abH is well defined if and only if H is normal.

Suppose H is normal and a, b, c, d ∈ G are such that aH = cH and bH = dH. We need
to show that

abH = (aH)(bH) = (cH)(dH) = cdH.

We proved in class that aH = cH iff c−1a ∈ H and bH = dH iff d−1b ∈ H. Hence

(cd)−1(ab) = d−1c−1ab = d−1hb

for some h ∈ H. Also

d−1hb = d−1bb−1hb = d−1bh′

where h′ = b−1hb ∈ H by the normality of H. Finally, since d−1b ∈ H and h′ ∈ H,

(cd)−1(ab) = d−1bh′ ∈ H.

Hence abH = cdH.
Conversely, suppose (aH)(bH) = abH is well defined. We need to prove that for any
h ∈ H and any g ∈ G, ghg−1 ∈ H. So let h ∈ H and g ∈ G. Notice that

(

(gH)(hH)
)

(g−1H) = (ghH)(g−1H) = ghg−1H

(We used parentheses here because we have not yet proved that the multiplication of
G/H is associative.) But since h ∈ H, multiplying the elements of H by h only permutes
them, so hH = eH. Hence
(

(gH)(hH)
)

(g−1H) =
(

(gH)(eH)
)

(g−1H) = (geH)(g−1H) = gg−1H = H

So ghg−1H = H. In particular, e ∈ H, so ghg−1 = ghg−1e ∈ ghg−1H = H, which is
what we wanted to show.



(c) (10 pts) Let G be a group and N a normal subgroup. Show that the factor set G/N of
left cosets of N is a group under the multiplication defined in part (b).

First, let xN, yN ∈ G/N . Then x, y ∈ G, so xy ∈ G. Hence

(xN)(yN) = xyN ∈ G/N.

Therefore G/N is closed.
If xN ∈ G/N , then

(eN)(xN) = exN = xN

and

(xN)(eN) = xeN = xN.

So eN InnG/N is an identity.
Let xN, yN, zN ∈ G/N . Then x, y, z ∈ G. So (xy)z = x(yz) and

(

(xN)(yN)
)

(zN) = (xyN)(zN) = (xy)zN = x(yz)N = (xN)(yzN) = (xN)
(

(yN)(zN)
)

.

Finally, if xN ∈ G/N then x ∈ G, so x−1 ∈ G, so x−1N ∈ G/N and

(xN)(x−1N) = xx−1N = eN

(x−1N)(xN) = x−1xN = eN.

So x−1N is the inverse of xN in G/N .

6. (a) (2 pts) What’s a permutation group?

See Definition 3.6.1.

(b) (5 pts) Find all symmetries of a regular tetrahedron.

Label the vertices the tetrahedron by 1, 2, 3, 4. The symmetries of the tetrahedron
permute these four vertices, hence we can write them in terms of permutations and they
form a subgroup of S4 and. There are rotational symmetries by 120◦ and 240◦ about the
four axes that pass through a vertex and the center of the opposite face. There are also
rotational symmetries by 180◦ about the three axes that pass through the midpoints
of two opposite edges. There is of course the identity. There are six reflections across
the planes that pass through an edge and the midpoint of the opposite edge. That is
18 symmetries so far. The order of S4 is 24. By Lagrange’s theorem, we know that S4

cannot have a subgroup order 18. In fact, if H ⊆ S4 is a subgroup which contains 18
elements, then it must contain the remaining 6 elements too. So the group of symmetries
is all of S4. The remaining 6 symmetries are reflections composed with rotations. In
terms of permutations, these are the 4-cycles in S4.



Here is an alternate argument. By the labeling above, the symmetries of the tetrahedron
form a subgroup of S4. We will show that this subgroup is all of S4. Notice that
the tetrahedron has a mirror symmetry across the plane through any one edge and
the midpoint of the opposite edge. These six reflections permute the vertices as the
transpositions (1 2), (1 3), (1 4), (2 3), (2 4), (3 4). Since any permutation in S4 can be
written as a product of transpositions, the products of these six transpositions make up
all of S4. Hence the group of symmetries of the tetrahedron is S4.

(c) (10 pts) Prove that every group is isomorphic to a permutation group.

See Theorem 3.6.2.

7. (10 pts each) Extra credit problem. Let φ : G1 → G2 be a group homomorphism and H2

a subgroup of G2. Define the pullback of H2 to be the set

φ−1(H2) = {g ∈ G1 | φ(g) ∈ H2}

(Note that the notation φ−1 does not imply that φ has an inverse.)
(a) Show that φ−1(H2) is a subgroup of G1.

See Proposition 3.7.6(b).

(b) If N2 is a normal subgroup of G2, must N1 = φ−1(N2) be a normal subgroup of G1?

Yes. See Proposition 3.7.6(b).


