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1. (10 pts) Let V and W be vector spaces over some field F and T ∈ L(V, W ). Prove that if T

is injective and (v1, . . . , vn) is linearly independent in V , then (T (v1), . . . , T (vn)) is linearly
independent in W .

Let α1, . . . , αn ∈ F be such that

α1T (v1) + · · · + αnT (vn) = 0.

Since T is linear

0 = α1T (v1) + · · · + αnT (vn) = T (α1v1 + · · · + αnvn).

But T is also injective, so the only vector in its null space is 0. Hence

α1v1 + · · · + αnvn = 0.

This shows α1 = · · · = αn = 0 by the linear independence of (v1, . . . , vn).

2. (10 pts) Suppose V and W are both finite dimensional vector spaces over the same field F .
Prove that there exists a surjective linear map T : V → W if and only if dim(W ) ≤ dim(V ).

Suppose T ∈ (V, W ) is surjective. Then

dim(V ) = dim null(T ) + dimR(T ) = dim null(T ) + dim(W ).

Since dim null(T ) ≥ 0, it must be that dim(W ) ≤ dim(V ).
Conversely, suppose dim(W ) ≤ dim(V ). Choose a basis v1, . . . , vm for V and w1, . . . , wn

for W . Construct a linear map T : V → W by letting T (vi) = wi for 1 ≤ i ≤ n and T (vi) = 0
for n < i. Extend T to other vectors in V by linearity, i.e. T (

∑

αivi) =
∑

αiT (vi). (See the
bottom of p. 39 and top of p. 40 in your text on this.)

We need to show T is surjective. Let w ∈ W . Then there exist β1, . . . , βn such that
w = β1w1 + · · · + βnwn. Let v = β1v1 + · · · + βnvn and notice

T (v) = T (β1v1 + · · · + βnvn) = β1T (v1) + · · · + βnT (vn) = β1w1 + · · · + βnwn = w.

3. (10 pts) Prove that the distributive property holds for matrix addition and matrix multipli-
cation. In other words, suppose A, B, and C are matrices whose sizes are such that A(B+C)
makes sense. Prove that AB + AC makes sense and A(B + C) = AB + AC.

For A(B+C) to make sense, the number of rows of B+C must be the same as the number
of columns of A. Call this number m. For B + C to make sense, B and C must have the
same size. In particular, they must have the same number of rows, which is also the number
of rows in B + C, that is m. So B and C have m rows and A has m columns, hence AB and
AC make sense.

Let k be the number of rows of A and n be the number of columns of B and C. Then

(A(B + C))ij =
m

∑

l=1

Aim(B + C)mj =
m

∑

l=1

Aim(Bmj + Cmj)

=
m

∑

l=1

AimBmj + AimCmj =
m

∑

l=1

AimBmj +
m

∑

l=1

AimCmj

= (AB)ij + (AC)ij

This is true for all 1 ≤ i ≤ k and 1 ≤ j ≤ n, so A(B + C) = AB + AC.



4. (10 pts) Let V and W be vector spaces over some field F . Let T : V → W be a linear map.
Prove that if T has an inverse S : W → V , then S is linear too.

Let w1, w2 ∈ W . Then

TS(w1 + w2) = 1W (w1 + w2) = w1 + w2 = 1W (w1) + 1W (w2)

= TS(w1) + TS(w2) = T (S(w1) + S(w2))

Since T has an inverse, T is injective, and hence S(w1 + w2) = S(w1) + S(w2).
Now, let w ∈ W and α ∈ F . Then

TS(αw) = 1W (αw) = αw = α 1W (w) = αTS(w) = T (αS(w))

By the injectivity of T , S(αw) = αS(w).

5. (10 pts each) Let V = R
3 and W = R

4 over R. Let
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(a) Find the null space and range of T .
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implies z = 2x, y = x from the first two equations. Notice that if these are satisfied

x − 3y + z = x − 3x + 2x = 0 and z − 2y = 2x − 2x = 0.

So
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As for the range
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By the dimension theorem, we expect dim R(T ) = dim(V ) − dim null(T ) = 3 − 1 = 2.
Indeed, notice that
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(b) Let
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Notice that B1 is a basis of V and B2 is a basis of W . Find the matrix of T with respect
to these bases.

We need to write the three vectors
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Since B2 is a basis, the 4 by 4 matrix above must have an inverse. It will help if we find
it first:
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6. (20 pts) Extra credit problem. Let U, V , and W be vector spaces over some field F such
that U and V are finite dimensional. Let S ∈ L(V, W ) and T ∈ L(U, V ). In this problem,
you will prove that

dim null(ST ) ≤ dim null(S) + dim null(T ).

(You may find that the proof is very similar to the proof of the Dimension Theorem. If you
don’t know how to prove one of the statements below, feel free to move on the next one and
assume that all the preceding statements have been proven.)
(a) Prove that null(T ) ⊆ null(ST ).

Let u ∈ null(T ). Then ST (u) = S(0) = 0. Hence u ∈ null(ST ). This is true for all
u ∈ null(T ), so null(T ) ⊆ null(ST ).



(b) Show that there exists a basis (u1, . . . , un) of null(ST ) and some 0 ≤ m ≤ n such that
(u1, . . . um) is a basis of null(T ).

First, note that null(T ) and null(ST ) are subspaces of U , which is a finite dimensional
vector space. Therefore null(T ) and null(ST ) are also finite dimensional. So we can
pick a basis (u1, . . . um) of null(T ). This is a linearly independent list in null(T ) and
hence null(ST ) and can therefore be extended to a basis (u1, . . . , un) of null(ST ).

(c) Prove that (T (um+1), . . . , T (un)) is linearly independent in V .

Suppose αm+1, . . . , αn ∈ F are such that

αm+1T (um+1) + · · · + αnT (un) = 0.

Then
T (αm+1um+1 + · · · + αnun) = 0.

Therefore

αm+1um+1 + · · · + αnun ∈ null(T ) = span(u1, . . . um).

Hence there exist β1, . . . , βm ∈ F such that

αm+1um+1 + · · · + αnun = β1u1 + · · · + βmum.

By the linear independence of (u1, . . . , un), all the αi and βj must be 0. Therefore
(T (um+1), . . . , T (un)) is linearly independent.

(d) Prove that (T (um+1), . . . , T (un)) is linearly independent in null(S).

Linear independence is not really an issue here. We already (T (um+1), . . . , T (un))
is linearly independent in V , therefore it is linearly independent in any subspace of
V in which it is contained. The question is whether T (um+1), . . . , T (un) ∈ null(S).
Since ui ∈ null(ST ), therefore S(T (ui)) = 0, so ui ∈ null(S) indeed. Therefore
(T (um+1), . . . , T (un)) is a linearly independent list in null(S).

(e) Show that n − m ≤ dim null(S). Conclude that

dim null(ST ) ≤ dim null(S) + dim null(T ).

Since (T (um+1), . . . , T (un)) is a linearly independent list in null(S), its length must be
no more than dim null(S). But its length is exactly n−m. Hence n−m ≤ dim null(S).
Hence

n ≤ dim null(S) + m =⇒ dim null(ST ) ≤ dim null(S) + dim null(T ).


