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1. (10 pts) Let V be a vector space. Prove or give a counterexample: if U1, U2, W are subspaces
of V such that

V = U1 + W and V = U2 + W

then U1 = U2.

This problem was on your first exam. See its solution there.

2. (10 pts) Let F be any field. Recall that

F∞ = {(x1, x2, . . .) | xi ∈ F for i = 1, 2, . . .}

is the vector space of all sequences with elements in F over the base field F . Prove that F∞

is infinite dimensional.

The proof is by contradiction. Suppose F∞ is finite dimensional. Let n = dim(F∞). For
i = 1, 2, . . . , n + 1, let vi be the sequence whose i-th entry is 1 and all of its other entries are
0. E.g.

v3 = (0, 0, 1, 0, 0, . . .).

Then the only solution to

α1v1 + α2v2 + · · · + αn+1vn+1 = (0, 0, 0, . . .)

is α1 = . . . = αn+1 = 0, since the only way to get 0 in the i-th entry is to multiply vi by
0. Hence (v1, . . . , vn+1) is linearly independent. But the length of a linearly independent
list cannot exceed the dimension in a finite dimensional vector space. We have reached a
contradiction.

3. (10 pts) Let V be a vector space. Prove that if there exists a linear map from V to some
other vector space, whose null space and range are both finite dimensional, then V is finite
dimensional. (Hint: It is tempting to use the Dimension Theorem, but that doesn’t quite
work.)

This proof is also by contradiction. Suppose V is infinite dimensional and T is a lin-
ear map from V to some vector space W , such that null(T ) and R(T ) are both finite
dimensional. Let n = dim null(T ) and k = dim R(T ). Choose a basis (v1, . . . , vn) for
null(T ). Now choose vn+1 ∈ V so that vn+1 6∈ span(v1, . . . , vn). Choose vn+2 ∈ V so that
vn+2 6∈ span(v1, . . . , vn+1). Keep doing this until you have chosen vn+k+1. The reason you
can always find such vectors is that V is infinite dimensional, therefore no finite list can span
it, therefore there is always a vector outside span(v1, . . . , vj). Obviously, (v1, . . . , vn+k+1)
is linearly independent, since none of the vectors in this list is a linear combination of the
preceding ones. We will prove that (T (vn+1), . . . , T (Vn+k+1)) is linearly independent in W .
Suppose

n+k+1∑

i=n+1

αiT (vi) = 0.

Then

T

(
n+k+1∑

i=n+1

αivi

)

= 0,



so
∑n+k+1

i=n+1 αivi ∈ null(T ). Therefore there exist β1, . . . , βn ∈ F such that

n+k+1∑

i=n+1

αivi =
n∑

i=1

βivi.

This is only possible if all the αi and βi are 0 because of the linear independence of
(v1, . . . , vn+k+1). Hence (T (vn+1), . . . , T (Vn+k+1)) is indeed linearly independent. But

T (vn+1), . . . , T (Vn+k+1) ∈ T (V ) = R(T )

which is only k-dimensional, hence it cannot contain a linearly independent list of k + 1
vectors. That is a contradiction.

4. (10 pts) Let V be a nonzero finite dimensional vector space and S, T ∈ L(V, V ). Prove that
ST and TS have the same eigenvalues.

Suppose λ is an eigenvalue of ST and v is a corresponding eigenvector. Then

TS(T (v)) = (TS)T (v) = T (ST )(v) = T (λv) = λT (v).

This shows that if T (v) 6= 0, then T (v) is an eigenvector of TS with eigenvalue λ. In fact, if
T (v) = 0, then ST (v) = 0, hence λ = 0. So if λ 6= 0, then T (v) is an eigenvector of TS with
eigenvalue λ. This shows that any nonzero eigenvalue of ST is also an eigenvalue of TS. The
argument is symmetric, so any nonzero eigenvalue of TS must also be an eigenvalue of ST .
Hence the nonzero eigenvalues of ST and TS are the same.

Now if 0 is an eigenvalue of ST , then there is a nonzero vector v ∈ V such that ST (v) = 0.
If T (v) 6= 0, then it is also an eigenvector of TS with eigenvalue 0 by the argument in the
previous paragraph. On the other hand, if T (v) = 0, then T is not one-to-one. Since V is
finite dimensional, T cannot be onto either since V (Theorem 3.21). Therefore TS is not
onto (why?), and TS is not one-to-one (again by Theorem 3.21). Hence null(TS) 6= {0}, and
any nonzero vector in null(TS) is an eigenvector of TS with eigenvalue 0. This argument is
symmetric too, so 0 is an eigenvalue of ST if and only if it is an eigenvalue of TS.

Remark: The statement is not true if V is allowed to be infinite dimensional. Can you
find a counterexample? There is one in your textbook and we looked at it in class too.

5. (10 pts) Let V be a vector space over the field F . Prove that the list (v1, . . . , vn) is a basis
of V if and only if every v ∈ V can be written as

v = α1v1 + α2v2 + · · · + αnvn

for some unique α1, . . . , αn ∈ F .

This is Proposition 2.8 in your text and is proven there.

6. (10 pts) Prove that matrix multiplication is associative. That is suppose A, B, and C are
matrices with entries in some field F such that (AB)C makes sense. Prove that A(BC)
makes sense and that (AB)C = A(BC).

Let A ∈ Mm×n(F ). Then for AB to make sense, B ∈ Mn×r(F ). This gives AB ∈
Mm×r(F ). For (AB)C to make sense C ∈ Mr×s(F ), which gives (AB)C ∈ Mm×s(F ). Since
B ∈ Mn×r(F ) and C ∈ Mr×s(F ), BC makes sense and is in Mn×s(F ). Finally, A(BC)



makes sense and is in Mm×s(F ) just like (AB)C. Now that we know (AB)C) and A(BC)
are the same size, we just need to compare the their entries.

((AB)C)ij =
r∑

k=1

(AB)ikCkj =
r∑

k=1

(
n∑

l=1

AilBlk

)

Ckj =
r∑

k=1

n∑

l=1

AilBlkCkj

(A(BC))ij =
n∑

l=1

Ail(BC)lj =
n∑

l=1

Ail

(
r∑

k=1

BlkCkj

)

=
n∑

l=1

r∑

k=1

AilBlkCkj

Since the order of the summations is interchangeable (addition is commutative!), these are
indeed the same.

7. (20 pts) Let V = R[x] be the vector space of polynomials over R. Let T = d
dx

: V → V be
the usual differentiation map.
(a) (4 pts) Prove that T is linear.

Let p, q ∈ V and c ∈ R. By the usual properties of differentiation you learned in calculus,

T (cp) =
d

dx
(cp) = c

dp

dx
= cT (p)

T (p + q) =
d

dx
(p + q) =

dp

dx
+

dq

dx
= T (p) + T (q)

Hence T is linear.

(b) (5 pts) Is T one-to-one? Find null(T ).

T is definitely not one-to-one. For example, T (2) = 0. In fact, you learned in calculus
that the derivative of a function is 0 if and only if that function is constant. Hence

null(T ) = {c ∈ R} = R

that is null(T ) is the set of constant polynomials.

(c) (5 pts) Is T onto? Find R(T ).

T is onto. Any polynomial has an antiderivative. Let p(x) = anxn+. . .+a1x+a0 ∈ R[x].
Then

q(x) =
an

n + 1
xn+1 +

an−1

n
xn + . . . +

a1

2
x2 + a0x

is also in R[x]. Notice that T (q) = p. Hence p ∈ R(T ). You can do this for any
polynomial p, so R[x] ⊆ R(T ). Obviously R(T ) ⊆ R[x] as well, so R(T ) = R[x].

(d) (2 pts) Does T have an inverse? If so, find it.

Since T is not one-to-one, it cannot have an inverse.

(e) (4 pts) Find all eigenvalues of T .

Since null(T ) 6= {0}, one of the eigenvalues of T is 0. For example, T (2) = 0 · 2.
In fact, any nonzero constant polynomial is an eigenvector of T with eigenvalue 0.
We will show that 0 is the only eigenvalue. Suppose p ∈ R[x] is nonconstant. Since
deg(T (p)) = deg(p) − 1, T (p) cannot possibly be a scalar multiple of p. So p is not
an eigenvector. Hence the only eigenvectors are the nonzero constant polynomials, and
they correspond to eigenvalue 0.



8. (10 pts) Extra credit problem. Let p ∈ C[x] be of degree m. Prove that p has m distinct
roots if and only if p and its derivative p′ have no roots in common.

By the Fundamental Theorem of Algebra, p is a product of m linear factors

p(x) = (x − α1)(x − α2) · · · (x − αm)

where α1, . . . , αm are the roots of p.
First, suppose that α1, . . . , αm are distinct. We get p′ by using the product rule:

p′(x) = (x − α2) · · · (x − αm) + (x − α1)(x − α3) · · · (x − αm) + · · · + (x − α1) · · · (x − αm−1).

Now
p′(α1) = (α1 − α2) · · · (α1 − αm)

since all the other terms in the sum have a factor of α1−α1 = 0. Since α1 6= αi for 2 ≤ i ≤ m,
p′(α1) 6= 0. A similar argument shows p′(αj) 6= 0 for all j = 2, . . . , m. Hence none of the
roots of p are roots of p′.

Conversely, suppose at least two of the roots are equal. Without loss of generality, α1 = α2.
(You can always reorder the roots so that two equal ones are α1 and α2.) Then

p(x) = (x − α1)
2 (x − α3) · · · (x − αm)
︸ ︷︷ ︸

q(x)

.

So

p′(x) =
d

dx
(x − α1)

2q(x)

= 2(x − α1)q(x) + (x − α1)
2q′(x)

= (x − α1)
(
2q(x) + (x − α1)q

′(x)
)
.

This shows that α1 is also a root of p′.

9. Extra credit problem. Let V be a nonzero vector space over some field F and T ∈ L(V, V ).
For a scalar λ ∈ F , define

Uλ = {v ∈ V | T (v) = λv}.

(a) (6 pts) Prove that Uλ is a subspace of V and is invariant under T .

First, notice that 0 ∈ Uλ since T (0) = 0 = λ0 for any λ. Now, let v, w ∈ Uλ and α ∈ F .
Then

T (v + w) = T (v) + T (w) = λv + λw = λ(v + w),

so v + w ∈ Uλ. Similarly

T (αv) = αT (v) = α(λv) = λ(αv),

so αv ∈ Uλ. Hence Uλ is a subspace of V .
Now, if v ∈ Uλ, then T (v) = λv ∈ Uλ, hence T (Uλ) ⊆ Uλ. Thus Uλ is indeed invariant
under T .

(b) (4 pts) Prove that Uλ 6= {0} if and only if λ is an eigenvalue of T .

If Uλ 6= {0} then there exists a nonzero v ∈ Uλ. By definition of Uλ, v must satisfy
T (v) = λv, hence v is an eigenvector of T and λ is an eigenvalue.
Conversely, if λ is an eigenvalue of T , then there exists an eigenvector v such that
T (v) = λv. Since eigenvectors are nonzero, 0 6= v ∈ Uλ shows Uλ 6= {0} in this case.


