MATH 524 EXAM 2 SOLUTIONS Mar 21, 2011

1. (10 pts) Let F be a field. Prove that F^{∞} is an infinite dimensional vector space.

Suppose F^{∞} is finite dimensional. Let $n = \dim(F^{\infty})$.

Let v_i be the sequence whose elements are all 0 except the *i*-th element which is 1. That is

$$v_i = (0, \ldots, 0, 1, 0, \ldots).$$

Now, let $S = (v_1, v_2, \ldots, v_{n+1})$. Notice that S_n is linearly independent since

$$0 = \sum_{i=1}^{n+1} \alpha_i v_i = (\alpha_1, \alpha_2, \dots, \alpha_{n+1}, 0 \dots)$$

only if $\alpha_i = 0$ for all $1 \le i \le n + 1$. But this would contradict Theorem 2.6 which says that no linearly independent set can be longer than the dimension.

2. (10 pts) Suppose that U and W are both 5-dimensional subspaces of \mathbb{R}^9 . Prove that $U \cap W \neq \{0\}$.

Since $U, W \subseteq \mathbb{R}^9$, U + W is a subspace of \mathbb{R}^9 . So $\dim(U + W) \leq \dim(\mathbb{R}^9) = 9$. By Theorem 2.18

$$\dim(U \cap W) = \dim(U) + \dim(W) - \dim(U + W) = 10 - \dim(U + W) \ge 1.$$

Hence $U \cap W \neq \{0\}$.

3. (10 pts) Let V be a vector space. Prove that if the list (v_1, \ldots, v_n) is linearly independent in V, then so is the list

$$(v_1 - v_2, v_2 - v_3, \dots, v_{n-1} - v_n, v_n)$$

obtained by subtracting from each vector (except the last one) the following vector.

Let

$$0 = \alpha_1(v_1 - v_2) + \alpha_2(v_2 - v_3) + \dots + \alpha_{n-1}(v_{n-1} - v_n) + \alpha_n v_n$$

= $\alpha_1 v_1 + (\alpha_2 - \alpha_1)v_2 + \dots + (\alpha_n - \alpha_{n-1})v_n$

Since (v_1, \ldots, v_n) is linearly independent, $\alpha_1 = 0$, $\alpha_2 - \alpha_1 = 0$, etc. Hence $\alpha_i = 0$ for all $1 \le i \le n$. This is exactly what we wanted to prove.

4. Let n ∈ Z^{≥0} and V = P_n(R). For a ∈ R, define the map T_a : V → R by T(p) = p(a). For example T₃(x² − 7) = 3² − 7 = 2. This is called the evaluation map at a.
(a) (6 pts) Prove that T_a is a linear map.

Let $p, q \in V$ and $\alpha \in \mathbb{R}$. Then

$$T_a(p+q) = (p+q)(a) = p(a) + q(a) = T_a(p) + T_a(q),$$

and

$$T_a(\alpha p) = (\alpha p)(a) = \alpha p(a) = \alpha T_a(p).$$

Hence T_a is a linear map.

(b) (4 pts) Find the range(T_a). Is T_a surjective?

If $b \in \mathbb{R}$, then the constant polynomial p(x) = b yields $T_a(p) = b$. This can be done for any $b \in \mathbb{R}$, so range $(T_a) = \mathbb{R}$. Indeed, T_a is surjective.

- (c) (10 pts) What can you you say about $\dim(\operatorname{null}(T_a))$? Is T_a injective?
 - By Theorem 3.4,

 $\dim(\operatorname{null}(T_a)) = \dim(V) - \dim(\operatorname{range}(T_a)) = n + 1 - 1 = n.$

So if n > 0 then dim $(\operatorname{null}(T_a)) > 0$, so T_a is not injective. If n = 0, then T_a is injective. Indeed $P_0(\mathbb{R}) = \mathbb{R}$ and $T_a : \mathbb{R} \to \mathbb{R}$ is just the identity map in this case.

5. (10 pts) Let V and W be vector spaces over the same field F and $T = \mathcal{L}(V, W)$. Prove that T is injective if and only if $\operatorname{null}(T) = \{0\}$.

See Proposition 3.2 in your textbook.

6. (10 pts) **Extra credit problem.** Let T_a be as in problem 4. Find a basis for null (T_a) . (Hint: if p is a polynomial then p(a) = 0 iff p(x) = (x - a)q(x) for some polynomial q.)

Notice that $0 = T_a(p) = p(a)$ iff p(x) = (x - a)q(x) for some polynomial q. We already know that dim(null(T_a)) = n, so if we can come up with a linearly independent list of n polynomials of the form $p_i(x) = (x - a)q_i(x)$, then we have a basis for null(T_a) (by Prop 2.17). One such list is

$$((x-a), (x-a)x, (x-a)x^2, \dots, (x-a)x^{n-1}).$$

To see that this is linearly independent, let

$$0 = \alpha_1(x-a) + \alpha_2(x-a)x + \dots + \alpha_n(x-a)x^{n-1} = (x-a)(\alpha_1 + \alpha_2 x + \dots + \alpha_{n-1}x^{n-1}).$$

Notice that this is so exactly when

$$0 = \alpha_1 + \alpha_2 x + \dots + \alpha_{n-1} x^{n-1}.$$

But this holds only when $\alpha_i = 0$ for all $1 \le i \le n - 1$.

Hence

$$((x-a), (x-a)x, (x-a)x^2, \dots, (x-a)x^{n-1})$$

is a basis of $\operatorname{null}(T_a)$.