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1. (10 pts) Give an example of a nonempty subset U of R
2 (over the field R) such that U is

closed under scalar multiplication, but U is not a subspace of R
2.

Let U be the union of the x-axis and the y-axis:

U = {(x, 0) | x ∈ R} ∪ {(0, y) | y ∈ R}.

Let α ∈ R. If u ∈ U then either u = (x, 0) for some x ∈ R or u = (0, y) for some y ∈ R. In
the first case, αu = (αx, 0) ∈ U . In the second case, αu = (0, αy) ∈ U . So U is closed under
scalar multiplication.

But U is not closed under addition. E.g. (1, 0), (0, 1) ∈ U , but (1, 1) 6∈ U . Hence U is not
a subspace of R

2.

2. (10 pts) Suppose (v1, . . . , vn) is linearly independent in V and w ∈ V . Prove that if (v1 +
w, . . . , vn + w) is linearly dependent, then w ∈ span(v1, . . . , vn).

Suppose (v1 + w, . . . , vn + w) is linearly dependent. Then there exist scalars α1, . . . , αn

not all 0 such that

α1(v1 + w) + · · · + αn(vn + w) = 0.

Hence

−

(

n
∑

i=1

αi

)

w = α1v1 + · · · + αnvn.

If
∑

αi = 0, then

0 = α1v1 + · · · + αnvn.

But this contradicts the linear independence of (v1, . . . , vn) since we know at least one of the
αi 6= 0. Therefore

∑

αi 6= 0 and

w =
−α1
∑

αi

v1 + · · · +
−αn
∑

αi

vn ∈ span(v1, . . . , vn).

3. (10 pts) Give an example of a function f : R
2 → R such that

f(av) = af(v)

for all a ∈ R and all v ∈ R
2, but f is not linear.

Let f : R
2 → R be the function f(x, y) = 3

√

x2y. Then

f(a(x, y)) = f((ax, ay)) = 3
√

(ax)2(ay) = a
3
√

x2y = af(x, y).

But f is not additive. E.g.

f(1, 0) + f(0, 1) = 0 + 0 = 0

and

f((1, 0) + (0, 1)) = f(1, 1) = 1.

4. (10 pts) Prove that every polynomial with odd degree and real coefficients has a real root.

Let p be such a polynomial. By Theorem 4.14, p can be factored as a product of linear
and quadratic factors. If all these factors were quadratic, the degree of p would have to be
even. Therefore there is at least one linear factor x − λ, and this λ is a real root of p.



5. (8 pts each) Let V and W be a vector spaces over the field F and T ∈ L(V, W ). Let
U1, U2 ⊆ V be subspaces. Prove or disprove the following statements.
(a) T (U1 + U2) = T (U1) + T (U2)

This is true. Let v ∈ T (U1 + U2). Then v = T (u) for some u ∈ U1 + U2. Such a u must
be of the form u = u1 + u2 for some u1 ∈ U1 and u2 ∈ U2. Hence

v = T (u) = T (u1 + u2) = T (u1) + T (u2) ∈ T (U1) + T (U2).

So T (U1 + U2) ⊆ T (U1) + T (U2).
Now let v = T (U1) + T (U2). So there exist u1 ∈ U1 and u2 ∈ U2 such that v =
T (u1)+T (u2). Then v = T (u1)+T (u2) = T (u1+u2) ∈ T (U1+U2). So T (U1)+T (U2) ⊆
T (U1 + U2). Now we know T (U1 + U2) = T (U1) + T (U2).

(b) T (U1 ⊕ U2) = T (U1) ⊕ T (U2)

This is false. We already know T (U1 + U2) = T (U1) + T (U2) from part (a), but we
will show by a counterexample that the directness of the first sum does not imply the
directness of the second sum.
Let V = W = R

2 over R and T (x, y) = (x + y, 0). Let U1 be the x-axis and U2 be the
y-axis. First, notice that

U1 + U2 = {(x, 0) + (0, y) | x, y ∈ R} = {(x, y) | x, y ∈ R} = R
2.

Next, (a, b) = (x, 0) + (0, y) implies x = a and y = b, so there is exactly one way to
write every vector in U1 + U2 = R

2 as a sum u1 + u2 with u1 ∈ U1 and u2 ∈ U2. Hence
the sum above is direct. Finally,

T (U1) = {T (x, 0) | x ∈ R} = {(x, 0) | x ∈ R} = U1

T (U2) = {T (0, y) | y ∈ R} = {(y, 0) | y ∈ R} = U1.

Therefore T (U1) + T (U2) = U1 + U1 = U1, but this sum is not direct. E.g. (0, 0) =
(0, 0) + (0, 0) = (1, 0) + (−1, 0).

6. (10 pts) Let V and W be vector spaces and T ∈ L(V, W ). Prove that T is injective if and
only if null(T ) = {0}.

See Proposition 3.2 in your textbook. Or those of you who have taken Math 521B, should
recognize this as Proposition 3.7.4(b) in Beachy and Blair.

7. (14 pts) Let V be a finite-dimensional vector space over the complex numbers and T ∈ L(V ).
Show that T has an eigenvector (and eigenvalue of course).

See Theorem 5.10 in your textbook.

8. (10 pts) Extra credit problem. Prove that the finite-dimensionality of V is a necessary
condition in problem 7. (Hint: find an infinite-dimensional complex vector space V and
T ∈ L(V ) such that T has no eigenvector.)

Let V = R
∞ and T the right shift operator

T (x1, x2, . . .) = (0, x1, x2, . . .).

Then if
λ(x1, x2, . . .) = (0, x1, x2, . . .)

then
λx1 = 0, λx2 = x1, λx3 = x2, . . . .



Now if λ = 0 then 0 = x1 = x2 = · · · . But an eigenvector must be nonzero. If λ 6= 0 then
x1 = 0 hence x2 = 0, etc. That still cannot be an eigenvector. Therefore T does not have
any eigenvector/eigenvalue.

Another example, following essentially the same idea, would be V = R[x] and T (p) = xp.

9. (10 pts) Extra credit problem. Let V be a finite-dimensional vector space and S, T ∈
L(V ). Prove that 0 is an eigenvalue of ST if and only if 0 is an eigenvalue of S or T .

Suppose 0 is an eigenvalue of ST . Then there is a v 6= 0 such that ST (v) = 0. If T (v) = 0
then v is also an eigenvector of T with eigenvalue 0. If T (v) 6= 0 then T (v) is an eigenvector
of S with eigenvalue 0.

Conversely, suppose 0 is an eigenvalue of S or T . If 0 is an eigenvalue of T then T (v) = 0
for some v 6= 0. So ST (v) = S(0) = 0. That is 0 is an eigenvalue of ST . If 0 is not an
eigenvalue of T then it must be an eigenvalue of S. So S(v) = 0 for some v 6= 0. Since 0 is
not an eigenvalue of T , null(T ) = {0}. So T is injective (by Prop 3.2). But T must then be
surjective too (by Theorem 3.21). So v = T (w) for some w. Since v 6= 0, also w 6= 0. Now
ST (w) = S(v) = 0, so 0 is an eigenvalue of ST .


