MATH 524 EXAM 1 SOLUTIONS Feb 20, 2013

1. (5 pts) Let F be any field. Determine if the following subset of F^3 is a subspace of F^3 :

$$\{(x_1, x_2, x_3) \in F^3 : x_1 x_2 x_3 = 0\}.$$

Call the above set U. It is not a subspace of F^3 because it is not closed under addition. For example, let $u_1 = (1, 1, 0)$ and $u_2 = (0, 0, 1)$. It is clear that $u_1, u_2 \in U$. But $u_1 + u_2 = (1, 1, 1) \notin U$.

2. (10 pts) Give an example of a nonempty subset U of \mathbb{R}^2 such that U is closed under scalar multiplication, but U is not a subspace of \mathbb{R}^2 .

Let $U = \{(x, y) \in \mathbb{R}^2 \mid xy = 0\}$. Notice that U is actually the union of the x-axis and y-axis. Obviously, $(0, 0) \in U$, so U is not empty. Let u = (x, y) be any vector in U and $\alpha \in \mathbb{R}$. Then $\alpha u = (\alpha x, \alpha y)$. Since $u \in U$, xy = 0. So $(\alpha x)(\alpha y) = \alpha^2 xy = 0$. Hence $\alpha v \in U$. So U is closed under scalar multiplication. Now $(1, 0), (0, 1) \in U$, but $(1, 0) + (0, 1) = (1, 1) \notin U$, so U is not closed under addition.

3. (10 pts) Let V be a vector space. Suppose that U is a subspace of V. What is U + U?

We will show that U + U = U. First, let $u \in U$. Then $u = u + 0 \in U + U$. This is true for all $u \in U$, so $U \subseteq U + U$. Now, let $u \in U + U$. Then $u = u_1 + u_2$ for some $u_1, u_2 \in U$. But U is a subspace, so U is closed under addition. Hence $u \in U$. This is true for all $u \in U + U$, so $U + U \subseteq U$. Therefore U + U = U.

4. (10 pts) Let V be a vector space over the field F. Prove that $a \cdot 0 = 0$ for all $a \in F$.

See Proposition 1.5 in your textbook.

5. (a) (3 pts) Let V be a vector space and U_1, U_2, \ldots, U_n be subspaces of V. Define $U_1 + U_2 + \cdots + U_n$.

 $U_1 + U_2 + \dots + U_n = \{u_1 + u_2 + \dots + u_n \mid u_1 \in U_1, u_2 \in U_2, \dots, u_n \in U_n\}$

(b) (3 pts) Define what it means for $U_1 + U_2 + \cdots + U_n$ to be a direct sum.

The sum $U_1 + U_2 + \cdots + U_n$ is direct if every $u \in U_1 + U_2 + \cdots + U_n$ can be written as $u = u_1 + u_2 + \cdots + u_n$ uniquely.

(c) (9 pts) Let $V = \mathbb{R}^3$ over \mathbb{R} and $U_1 = \{(x, y, z) \mid x + y + z = 0\}$. Find a subspace $U_2 \subseteq V$ such that $V = U_1 \oplus U_2$. (Obviously, you need to prove that $V = U_1 \oplus U_2$.)

Let $U_2 = \{(x, 0, 0) \mid x \in \mathbb{R}.$ That is U_2 is the x-axis. Since U_1 and U_2 are both subspaces of V, $U_1 + U_2 \subseteq V$. Now, let v = (x, y, z) be any vector in V. Let $u_1 = (-y - z, y, z)$ and $u_2 = (y + z, 0, 0)$. Notice that $u_1 \in U_1$, $u_2 \in U_2$, and $v = u_1 + u_2$. So $V \subseteq U_1 + U_2$. Hence $V = U_1 + U_2$.

By Proposition 1.9, if $U_1 \cap U_2 = \{0\}$ then $U_1 + U_2$ is direct. Let v = (x, y, z) be in $U_1 \cap U_2$. Then $v \in U_2$, so y = z = 0. But $v \in U_1$, so x = x + y + z = 0 too. So v = 0.

Hence
$$U_1 \cap U_2 = \{0\}.$$

6. (10 pts) **Extra credit problem.** Let V be a vector space and U_1, U_2, \ldots, U_n be subspaces of V. Prove that $U = U_1 + U_2 + \cdots + U_n$ is the smallest subspace of V such that $U_i \subseteq U$ for all $1 \leq i \leq n$. I.e. you need to prove that if W is a subspace of V such that $U_i \subseteq W$ for all $1 \leq i \leq n$ then $U \subseteq W$.

Let W be a subspace of V such that $U_i \subseteq W$ for all $1 \leq i \leq n$ then $U \subseteq W$. Let $u \in U_1 + \cdots + U_n$. Then $u = u_1 + \cdots + u_n$ for some $u_i \in U_i$ for $1 \leq i \leq n$. Since $u_i \in U_i$ and $U_i \subseteq W$, then $u_i \in W$ for all i. But W is a subspace, so it is closed under addition. Hence $u = u_1 + \cdots + u_n \in W$. This is true for all $u \in U$, so $U \subseteq W$.