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1. (10 pts) Prove or give a counterexample: if U1, U2, W are subspaces of V such that

V = U1 ⊕ W and V = U2 ⊕ W

then U1 = U2.

Here is a counterexample. Let V = R2, U1 the x-axis, U2 the y-axis, and W = {(x, x) |
x ∈ R}. We will show that U1 + W = V and U2 + W = V .

Since U1, W ⊆ V , U1 + W ⊆ V . Let v = (x, y) in V . Then

v = (x − y, 0)
︸ ︷︷ ︸

∈U1

+ (y, y)
︸ ︷︷ ︸

∈U2

∈ U1 + W.

So V ⊆ U1 +W . Hence U1 +W = V . That the sum is direct follows from U1 ∩W = {(0, 0)}.
An analogous argument shows that V = U2 ⊕ W . So U1 ⊕ W = U2 ⊕ W , but obviously

U1 6= U2.

2. (10 pts) Let U be the subspace of R5 defined by

U = {(x1, x2, x3, x4, x5) ∈ R5 : x1 = 3x2 and x3 = 7x4}.
Find a basis of U .

Notice that any vector in u ∈ U is of the form (3x2, x2, 7x4, x4, x5) where x2, x4, x5 ∈ R.
Therefore

u = x2(3, 1, 0, 0, 0) + x4(0, 0, 7, 1, 0) + x5(0, 0, 0, 0, 1)

and
U = span ((3, 1, 0, 0, 0), (0, 0, 7, 1, 0), (0, 0, 0, 0, 1)) .

Observe that

(0, 0, 0, 0, 0) = α1(3, 1, 0, 0, 0) + α2(0, 0, 7, 1, 0) + α3(0, 0, 0, 0, 1)

= (3α1, α1, 7α2, α2, α3)

implies α1 = α2 = α3 = 0. So these vectors are linearly independent. Therefore they form a
basis of U .

3. (10 pts) Suppose that T ∈ L(V ) is such that every vector in V is an eigenvector of T . Prove
that T is a scalar multiple of the identity operator.

We are asked to prove that there exists a scalar λ such that T (v) = λv for all v ∈ V . We
already know that for every v ∈ V there is a scalar λv such that T (v) = λvv. But we need
to prove that these λv’s are the same and do not depend on v.

If V is {0} or V has only one nonzero vector in it, then the statement is obviously true.
So let v 6= u be nonzero vectors in V . We know that there exist λv, λu ∈ F such that

T (v) = λvv and T (u) = λuu. Suppose λv 6= λu. Now, we also know that there exists
λv+u ∈ F such that T (v + u) = λv+u(v + u). But by linearity,

T (v + u) = T (v) + T (u) = λvv + λuu

Hence
λvv + λuu = λv+u(v + u) = λv+uv + λv+uu.

So
0 = (λv+u − λv)v + (λv+u − λu)u.



But eigenvectors that correspond to distinct eigenvalues are linearly independent. So the
above equality can only hold if λv+u − λv = 0 and λv+u − λu = 0. Hence λv = λv+u = λu.
But this contradicts λv 6= λu.

4. (10 pts) Let V be a finite dimensional vector space and T ∈ L(V, V ). Prove that the following
are equivalent:
(a) T is bijective,
(b) T is injective,
(c) T is surjective.

This is Theorem 3.21 in your textbook.

5. (10 pts) Let V and W be vector spaces such that dim(V ) < ∞. Let T ∈ L(V, W ). Prove
that the range of T is finite dimensional and

dim(V ) = dim(null(T )) + dim(range(T )).

This is Theorem 3.4 in your textbook.

6. (10 pts) Prove that every linear operator on a finite dimensional complex vector space has
an eigenvalue.

This is Theorem 5.10 in your textbook.

7. (10 pts) Extra credit problem. Prove that dimQ(R) = ∞. (Hint: prove that you can build
as long a linearly independent list as you want from the square roots of prime numbers.)

If you follow the hint, you can argue that

(
√

2,
√

3,
√

5,
√

7, . . .)

is as long a linearly independent list as you want. If R were finite dimensional over Q then it
would have a finite spanning list and no linearly independent list could be longer than that
spanning list. The trick here is to prove the linear independence of the list above. I will
leave that challenge to you.

Here is another approach, if you know about countable and uncountable sets. Suppose R

is finite dimensional over Q. Then R has a basis (v1, . . . , vn). Every vector in R can then be
expressed uniquely as α1v1 · · ·αnvn where α1, . . . , αn ∈ Q. But the number of elements in
the set

{α1v1 · · ·αnvn | α1, . . . , αn ∈ Q}
is the same as in the set

Q × Q × · · · × Q
︸ ︷︷ ︸

n times

= Qn,

which is countable because it is a finite Cartesian product of countable sets. But R is not
countable.

Finally, here is yet another approach if you know about transcendental numbers. A tran-
scendental number is an irrational number that is not a root of any nonzero polynomial with
rational coefficients. For example, π is a well-known example of a transcendental number.
Hence

(1, π, π2, π3, . . .)

is a linearly independent list that you can make as long as you want. Hence R cannot be
finite dimensional over Q.


