
MCS 118 Final Exam Solutions

1. (5 pts each) The graph of f is given. Draw the graphs of the following functions. Feel free
to use the same coordinate axes already given in the diagram, but be sure to explain what
you did to the graph of f to construct the new graph.
(a) g(x) = −2f(x)
(b) h(x) = f
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To get the graph of g(x), stretch the graph of f(x) by a factor of 2 in the vertical direction
and reflect it across the horizontal axis. To get the graph of h(x), stretch the graph of f(x)
by a factor of 3 in the horizontal direction and shift it up by a unit.

2. (10 pts) Prove the statement using the δ − ǫ definition of a limit:

lim
x→0

x3 = 0.

We need to show that for every ǫ > 0, there is a δ > 0 such that if 0 < |x − 0| < δ then
|x3 − 0| < ǫ. We start by figuring out what a good choice for δ is depending on ǫ. We want
|x3 − 0| < ǫ, which is the same thing as

|x3| < ǫ.

Use the fact that |ab| = |a||b| for any real numbers a, b to write |x3| = |x|3. So we really
want

|x|3 < ǫ.

We can take the cube root of both sides because the cube root function g(x) = 3
√
x is an

increasing function, so if |x|3 < ǫ then
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Since |x− 0| = |x|, this suggests that setting δ = 3
√
ǫ is a good choice for δ. Note that since

ǫ > 0, δ = 3
√
ǫ > 0. In fact, suppose

0 < |x− 0| < δ = 3
√
ǫ.



Then

|x| < 3
√
ǫ.

We can cube both sides because the cube function h(x) = x3 is an increasing function, so if
|x| < 3

√
ǫ then
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|x3| < ǫ because |x|3 = |x3|
|x3 − 0| < ǫ

We have shown that for every ǫ > 0, δ = 3
√
ǫ > 0 is such that if 0 < |x − 0| < δ then

|x3 − 0| < ǫ.

3. (10 pts) Use the Limit Laws to find the exact value of

lim
x→0

√
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√
3

x
.

Do not forget to justify your work by referring to the Limit Laws and any other result you
use.

We cannot start by using Limit Law #5 because we will end up with a limit in the
denominator that is 0. So we will multiply the numerator and the denominator by

√
3 + x+√

3, which we can do because
√
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√
3 ≥
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3, so it is never 0.
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We can now cancel x because x → 0 means x is a number close to 0 but not equal to 0. So
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4. (5 pts each)

(a) Let S and T be nonempty sets. State the definition of a function f from S to T . What
are the domain and the codomain of f?

A function f : S → T is a rule that assigns to each element x ∈ S one and only one
element f(x) in T .

(b) Let S be the set of all gifts in Santa’s bag, including those lumps of coal for the naughty
children. Let T be the set of all elves that are employed at Santa’s North Pole factory.
Let e : S → T be the rule

e(x) = the elf that wrapped x.

Is e a function?

Whether e is a function is up to interpretation. Assuming that only elves work wrapping
gifts in Santa’s factory and each gift is wrapped by exactly one elf, e is a function because
it assigns to each gift in Santa’s bag one and only one elf that wrapped it.
On the other hand, if the elves collaborate wrapping gifts, then a gift may be wrapped
by several elves and then e would not assign to that gift only one elf, so e would not be
a function. Also, if there are any gifts in Santa’s bag that are unwrapped–perhaps the
lumps of coal–, or if anyone other than the elves is wrapping gifts in Santa’s factory,
e.g. Santa himself, or Mrs. Claus, or the reindeer–although wrapping gifts with hooves
may be quite challenging–then e may not assign an elf to a particular gift x at all, so e
is not a function.

5. (5 pts each)
(a) Give an example of a function that is neither even nor odd. Don’t forget to justify your

example, that is explain why it is neither even nor odd.

Let f : R → R be f(x) = x + 1. Then f(2) = 3 and f(−2) = −1. So f cannot
be an even function because f(−2) 6= f(2), and f cannot be an odd function because
f(−2) 6= −f(2).

(b) Give an example of a nonlinear function that is decreasing throughout its domain.
Again, remember to justify your example.

Let f : R → R be f(x) = (1/2)x. The graph of f below shows that if x1 < x2 then
f(x1) > f(x2), so f is a decreasing function. Since f is not of the form mx+ b, it is not
a linear function.
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6. (a) (4 pts) Define what a continuous function is.

A function f is continuous at a number x = a if

lim
x→a

f(x) = f(a).



(b) (6 pts) At what numbers is the function f whose graph is given below discontinuous?
Identify what type of discontinuity f has at each such number.
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The function f has a
• jump discontinuity at x = −2 because the one-sided limits limx→−2− f(x) and
limx→−2− f(x) both exist but are not equal,

• an infinite discontinuity at x = 1 because the values of f get arbitrarily large as
x → 1− or arbitrarily negative as x → 1+,

• a removable discontinuity at x = 3 because the limit limx→3 f(x) = 3 exists but
is not equal to f(3) = 1.

7. Extra credit problem.

(a) (10 pts) We noted in class that

lim
x→0

sin

(

1

x

)

does not exist. Use the δ − ǫ definition of a limit to prove this. Hint: suppose the limit
exists and is L, and show that for ǫ = 1/2 there no δ > 0 that would satisfy the δ − ǫ
definition of a limit.

Suppose

lim
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This is true if for every ǫ > 0 there is a δ > 0 such that if 0 < |x− 0| < δ then
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In particular, there should be such a δ for ǫ = 1/2. When ǫ = 1/2,
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But no matter how small δ is, it is always possible to find −δ < x < δ such that
sin(1/x) = 1. For this, all we need is that 1/x = π/2 + 2kπ. That is

x =
1

π/2 + 2kπ
.

If we make k large, then 1

π/2+2kπ will be small. By making k sufficiently large, we can

make 1

π/2+2kπ as small as we want. In fact, we can solve the inequality

1

π/2 + 2kπ
< δ

by multiplying both sides by π/2+2kπ. If k is positive, then π/2+2kπ is also positive, so
the direction of the inequality stays the same when we multiply both sides by π/2+2kπ:
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Whatever number is on the left-hand side of the inequality, it is always possible to choose
a positive integer k larger than that number. For such a k, the number x1 = 1

π/2+2kπ

satisfies

0 < x1 < δ =⇒ |x1 − 0| < δ

while
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= 1.

Now, let x2 = 1

3π/2+2kπ . Then x2 < x1 since 3π/2 + 2kπ > π/2 + 2kπ. Hence it is also

true that

0 < x2 < δ =⇒ |x2 − 0| < δ
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Now, it cannot be that
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are both true because there is no way that both -1 and 1 are between L − 1/2 and
L+ 1/2 on the number line. So there is no value of δ > 0, however small that it would



be true for every x that if 0 < |x− 0| < δ then | sin(1/x)− L| < ǫ. Therefore L cannot
be the limit of sin(1/x) as x → 0. This argument works for any value of L. Therefore

lim
x→0

sin
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)

does not exist.

(b) (5 pts) Would a similar argument show that

lim
x→0

cos

(
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)

does not exist? Explain your reasoning.

Yes, the same kind of argument would work, except cos(1/x) would be 1 when x1 =
1

2kπ

and −1 when x2 =
1

π+2kπ . By choosing k large enough, we can find such and x1 and x2
as close as we want to 0.


