
Notes for Section 1.2

An important reason that people care about functions and want to study them is that they are
the building blocks of mathematical models in the physical and social sciences. This section is a
reminder of the basic kinds of functions of real numbers you have come across in your math classes
and the ways you can combine them to build other functions.

A linear function from real numbers to real numbers is a function of the form f(x) = mx + b,
where m and b are constants. They are called linear functions because their graphs are straight
lines. The reason that the graphs are straight lines is that the function has a constant slope. The
slope between a point (x1, y1) and a point (x2, y2) is the ratio of the difference in the y-coordinates
and the difference in the x-coordinates:

y2 − y1
x2 − x1

.

We are, of course, assuming that x1 6= x2, otherwise the denominator is 0 and the ratio is not
defined. Notice that it does not matter which of the two points you consider the first point and
which is the second point because

y1 − y2
x1 − x2

=
−(y2 − y1)

−(x2 − x1)
=

y2 − y1
x2 − x1

.

The slope, as the name may suggest, has to do with how steeply the line that passes through the
two points goes up (if the slope is positive) or down (if the slope is negative). If we denote the

difference y2−y1 by ∆y and the difference x2−x1 by ∆x, then the slope is also ∆y
∆x . It is customary

to refer to ∆y as the rise and to ∆x as the run. Hence the slope is also the rise divided by the
run, or ”rise over run.”

∆ x = x  − x12

2y = y  − y1∆

y

x

What makes a linear function special is that its slope is the same between any two (distinct)
points on its graph. Let f(x) = mx+ b and let (x1, y1) and (x2, y2) be two (distinct) points on its
graph. Then y1 = f(x1) and y2 = f(x2). The slope between them is

y2 − y1
x2 − x1

=
f(x2)− f(x1)

x2 − x1
=

(mx2 + b)− (mx1 + b)

x2 − x1
=

mx2 + b−mx1 − b

x2 − x1
=

m(x2 − x1)

x2 − x1
= m.

So m is always the slope regardless of the values of x1 and x2.
The value of b is the y-intercept. The graph of f(x) = mx + b crosses the y-axis at y = b or at

the point (0, b) if you prefer to specify both coordinates. Finding the equation of a line that passes



through two given points or one whose slope is given along with a point on the line are common
problems and you should know how to do them.

One more thing worth mentioning is that the slope of a vertical line is not defined and its equation
cannot be written in the form y = mx+ b. But a vertical line is not the graph of a function anyway
because it fails the vertical line test in an obvious way. Vertical lines do have equations, of a very
simple form x = c where the point (c, 0) is where the line crosses the x-axis.

Power functions are of the form f(x) = xn where n is a constant number, or more generally,
f(x) = kxn where k and n are constants. The value of n is called the degree of the power function
and determines the shape of the graph. If n is a positive even integer, the graph is similar to the
graph of f(x) = x2, although it is not actually a parabola, unless n = 2. The larger the value of
n, the steeper the graph as x increases in the positive direction or decreases toward more negative
values. If n is a positive odd integer, the graph is similar to the graph of f(x) = x3. The larger the
value of n, the steeper the graph. You should be familiar with the following algebraic properties of
powers (or exponents, depending on how you look at them) and understand why they hold.

xmxn = xm+n

xm

xn
= xm−n

x−n =
1

xn

x0 = 1 for any x ∈ R except x = 0
(

xm
)n

= xmn

(xy)n = xnyn

Note that 00 is undefined. It is easy to understand why these work if m and n are positive integers,
but they also work when m and n are any real numbers.

You should also be familiar with fractional exponents. First,

x1/n = n

√
x

since
(

x1/n
)n

= x(1/n)n = x1 = x,

and so x1/n must be a number whose n-th power is x. The n-th root of x is exactly such a number.
Note that even roots such as

√
, 4
√

, 6
√

, etc, do not like negative numbers under the root because
any even power or any real number is nonnegative. So there is no real number that could be the
value of n

√
x if n is even and x < 0. Odd roots on the other hand are not picky about negative

numbers. E.g. 3
√
−8 = −2 as (−2)3 = −8.

If there is a fraction in the exponent whose numerator is not 1, it can be interpreted in two ways:

xm/n = x(1/n)m =
(

x1/n
)m

=
(

n

√
x
)m

or

xm/n = xm(1/n) =
(

xm
)1/n

= n

√
xm.

Both are correct and in general,
(

n

√
x
)m

= n

√
xm.

There is a bit of ambiguity when m/n is not reduced to lowest terms. E.g.

(−5)6/4 =
(

4
√
−5

)6

has no real value because of the negative number in the 4th root, whereas

(−5)6/4 = 4
√

(−5)6 =
4
√
15625 ≈ 11.1803.



The convention in this case it that the fraction should first be reduced to lowest terms. So in the
last example, 6/4 = 3/2 and now

(−5)3/2 =
(√

−5
)3

has no real value because of the negative number in the square root. In fact,

(−5)3/2 =
√

(−5)3 =
√
−125

has no real value either for the same reason. The ambiguity is gone and this is the correct inter-
pretation of (−5)3/2.

You should be familiar with graphs of power functions (including root functions) and understand
how the exponent affects the shape of the graph of f(x) = xn. Play with Desmos if you need to.

Polynomials are sums of power functions with nonnegative integer exponents, such as p(x) =
3x4 − 2x3 + 7x+ 5. In general, a polynomial is of the form

p(x) = anx
n + an−1x

n−1 + an−2x
n−2 + · · ·+ a2x

2 + a1x
1 + a0

where n is a nonnegative integer. It is important to understand that polynomials cannot have
powers of x with negative or noninteger exponents. The a0, a1, . . . , an are called the coefficients of
the polynomial. The term anx

n with the highest exponent such that an 6= 0 is called the leading

term of the polynomial and its coefficient an is the leading coefficient. The degree of the polynomial
is the degree of the leading term. The term a0 is the constant term. If you are missing how that
term is a power function, you can think of it as a0x

0 since x0 = 1 in most cases. Except of course
that 00 is not 1, but we will not split hairs over this.

Example:

p(x) = 3x4 − 2x3 + 7x+ 5

is a polynomial of degree 4, whose leading term is 3x4, leading coefficient is 3, and constant term is
5. It is worth noting that linear functions are polynomials of degree 1 (of the slope is nonzero) or
0 (if the slope is 0). In fact, a linear function whose slope is 0 is just a constant function f(x) = c.
The degree 0 of such a constant function is 0 because you can always write it as f(x) = cx0 (unless
of course x = 0, but we said we would not get hung up on that). So the leading term (highest power
of x) in f is x0. Therefore the degree of f is 0. There is one exception to that last observation:
if c = 0, then we have the zero polynomial p(x) = 0. The zero polynomial has no leading term
(remember the leading term must have a nonzero coefficient). Therefore its degree is usually not
defined, or sometimes defined to be −∞ for reasons that we do not need to delve into now.

A polynomial p with real coefficients can always be regarded as a function R → R. This is
because for any real number x, p(x) can be evaluted and gives a real number as a result. So p is a
rule that assigns to a real number input a real number output.

A number c such that p(c) = 0 is called a root or zero of the polynomial p. The roots of p are
exactly those places where the graph of p crosses the x-axis. A useful (and nonobvious) fact about
polynomials is that if p(c) = 0 then p can expressed as

p(x) = (x− c)q(x)

for some other polynomial q. In other words, x−c can be factored out. This has to do with the fact
that polynomials can be divided (and multiplied) much like integer numbers, using basically the
same long-hand division procedure. Chances are you have seen this in one of your algebra courses.
If you are drawing a blank at this point, you should really Google polynomial division. For example,
Khan Academy has video lectures of how this is done. We are not going to do polynomial division
much or at all in this cours, but we will use the consequence about factoring out that I mentioned
above. Vice versa, it is also true that if x−c is a factor of the polynomial p, that is p(x) = (x−c)q(x)
for some polynomial q, then c is a root of p. This is easy to see by substituting c into p:

p(c) = (c− c)q(c) = 0q(c) = 0.



Suppose c1, c2, . . . , cn are the roots of the polynomial p. Then

x− c1, x− c2, . . . , x− cn

can all be factored out as

p(x) = (x− c1)(x− c2) · · · (x− cn)q(x)

where q is also some polynomial q(x) = bmxm+ bm−1x
m−1+ · · ·+ b1x+ b0. If you were to multiply

all of the above out using the distributive law, you could choose x from all of the factors of the
form x− ci and the leading term bmxm from q and you would get a term bmxm+n. This would be
the highest degree term you could get, so this would have to be the leading term of p. So

deg(p) = m+ n ≥ n.

This leads us to the following observation: the number of roots of a polynomial cannot exceed its
degree. So a polynomial of degree n has at most n roots, and therefore its graph crosses the x-axis
at most n times.

Polynomials are frequently used in mathematical models. We will see them often in this course.
Rational functions are quotients of polynomials. So f is a rational function if

f(x) =
p(x)

q(x)

where p and q are polynomials and q is not the zero polynomial q(x) = 0. The name comes from the
analogy with rational numbers. A rational number is a quotient of two integers, while a rational
function is a quotient of two polynomials. Note that the denominator q(x) can be 0 for some
particular values of x, just not for all of them. In fact, it is quite important where q has a value of
0 because those numbers are not in the domain of f . We will see rational functions in this course
from time to time. It is difficult to say anything general about the shapes of their graphs, other
than they can have holes and discontinuities.

Trigonometric functions should also be familiar to you. Make sure you understand their defini-
tions in terms of right triangles and the unit circle. You should also be familiar with their graphs.
One important note here that whenever we deal with trigonometric functions in calculus, we will
always assume that their inputs are angles measured in radians. This is because radians are a more
natural way to measure numbers than degrees, despite the fact that the numbers appear to be
messier. Formulas in calculus turn out to be nice if the angles are measured in radians, and messy
if the angles are in degrees. You have probably seen a number of trigonometric identities in your
previous math courses. Let me mention a few of the most important ones to us in this course:

sin(−x) = − sin(x)

cos(−x) = cos(x)

tan(x) =
sin(x)

cos(x)

cos(x) = sin
(

x+
π

2

)

for any real number x. All of these can be made sense of using the unit circle interpretation of
trigonometric functions. Note that the first two say that sine is an odd function and cosine is an
even function.

Our textbook mentions exponential and logarithmic functions in passing. Exponential and loga-
rithmic functions are also frequent ingredients of models, especially in population dynamics, ecology,
epidemiology, economics, and in particular, finance, and in many other sciences and social sciences.
Let me remind you of a few things you have likely seen about these functions. The exponential
function f(x) = ax, where a is a constant called the base, is defined for positive values of a. If
a > 1, we have a function whose values are increasing as x increases. This should make sense if you



think about integer values of x at least. If 0 < a < 1, then the function is decreasing. If a = 1, we
juts get the constant function f(x) = 1. Negative values of a are problematic because of noninteger

values of x. E.g. (−5)3/2 does not have a real value as we noted above. Technically, we could set
a = 0, but we would just get the constant function f(x) = 0 except with a whole in the graph at
x = 0.

We will play with the graphs in class a bit and we will see that they all look similar. The value
of a determines the steepness of the graph. You have likely come across the exponential function
f(x) = ex where e is an irrational number e = 2.7182 . . .. This is often treated as the mother of
all exponential functions. In fact, it is possible to express any exponential function in the form
f(x) = ekx for some appropriate number k. The reason for the popularity of the number e despite
the fact that it is irrational and hence does not have a particularly nice form as a decimal fraction
has to do with calculus. It turns out that the exponential function with this particular base results
in simpler formulas in calculus than any of the other choices for the base.

The most important thing to remember about logarithms is that loga(x) is the number y such
that ay = x. So

aloga(x) = x and loga(a
x) = x.

This close relationship between exponential and logarithmic functions is similar to the relationship
between power functions and roots. They are inverse functions. That is one undoes what the other
does. We will see in class that their graphs are also closely related. The most popular logarithmic
function in calculus is loge, which everybody writes as ln for natural log. We have reviewed some of
the properties of exponents. This would be a good time to remind yourself of the most important
properties of logarithms, such as

loga(1) = 0

loga(xy) = loga(x) + loga(y)

loga

(

x

y

)

= loga(x)− loga(y)

loga

(

1

x

)

= loga(x)

loga(x
y) = y loga(x)

If these have faded into the fog in your memory by now, try to spend a little quality time looking
them up. Here are two non-properties of log function, very popular with students with the 6= sign
replaced (erroneously) by =.

loga(x+ y) 6= loga(x) + loga(y)

loga(x− y) 6= loga(x)− loga(y)

This section also talks about the following kinds of transformations of graphs of functions

• Vertical shift: f(x) + c
• Vertical stretch/compression/reflection: cf(x)
• Horizontal shift: f(x+ c)
• Horizontal stretch/compression/reflection: f(cx)

You will want to focus on understanding what these do to the graph and how the geometric effect
is related to the value of c. In particular, the horizontal transformations work in ways that are
likely the opposite of what you would expect. We will look at examples in class. We will also want
to understand what happens if we apply several of these transformations at the same time, such
as af(x) + b, or f(ax) + b, or f(ax + b). Combining vertical transformations is not difficult, but
horizontal ones are again a little counterintuitive. We will play with them in class. Find a way to



understand them in a way that makes sense to you. These give us ways to construct new functions
from the ones we already have by modifying them slightly.

We can also construct new functions by adding, subtracting, multiplying, and dividing functions.
We do this by doing the corresponding algebraic operations to their output values. For example, the
sum of two functions f and g of real numbers is the function f + g given by the rule (f + g)(x) =
f(x) + g(x). When given the input value x, the function f + g assigns to x the output value
f(x)+g(x). When you do this, you need to be somewhat careful with the domains of f and g. The
function f + g can only have a number x in its domain if x is both in the domain of f and of g. In
other words, the domain of f + g is at most the intersection of the domains of f and g. When you
divide f/g you also need to be careful to exclude any number x where g(x) = 0 from the domain
of f/g.

Composition of functions is another way we can build new functions from old.

Definition 1. Let f : A → B and g : B → C be functions. The composite function g ◦ f : A → C
is given by

g ◦ f(x) = g(f(x)).

Note that the notation is a little reversed: the way g ◦ f calculates its value at x is by applying
the function f first to x and then g to the output of f . This is a result of the convention that we
write the function in front of the input. In practice, this is not a problem if you write out g ◦ f(x)
as g(f(x)) because the parentheses tell you the correct order of applying the two functions.

You need to be careful with domains and codomains when you compose functions. The definition
above assumes that the domain of g is the same as the codomain of f . Of course, there is good
reason for this: we want to be sure that any potential output of f can be a meaningful input to g.
In practical problems (that is computational problems), it is sometimes advantageous to be a little
more flexible: nothing will go wrong as long as the range of f is a subset of the domain of g. The
book has a number of examples to familiarize yourself with compositions.

Note that composition of functions is not commutative: f ◦g 6= g ◦f in general. You can see this
in Example 5 in our textbook. In fact, depending on the domains and codomains, it could easily
happen that one of f ◦ g and g ◦ f is not even defined, while the other is.

On the other hand, composition of functions is associative: h ◦ (g ◦ f) = (h ◦ g) ◦ f for any
functions f : A → B, g : B → C, and h : C → D. This is easy to see. First, note that h ◦ (g ◦ f)
and (h ◦ g) ◦ f are both functions from A to D. Second, if x is any element of A, then

h ◦ (g ◦ f)(x) = h(g ◦ f(x)) = h(g(f(x)))

and
(h ◦ g) ◦ f(x) = h ◦ g(f(x)) = h(g(f(x))),

which are the same.


