
Notes for Section 1.4

Now that we have seen how to deal with limits using the definition (hard), we will learn how to
find them using a few shortcuts (easy). The shortcuts do not always work, but they do work often.
The first thing you will want to learn is the limit laws. These are of course theorems, each of which
can be proven to be true either by a δ− ǫ argument of by using the other limits laws. We will show
why some of these are true, but first focus on what they say and how to use them. I will not list
them here since they are listed in the textbook anyway. But let me show you how to use them on
an example.

Let us find

lim
x→5

3x+ 4√
x2 − 9

.

I will do this by starting with the basic ingredients this function is made up of. Let us first look at
the parts of the numerator since that is simpler than the denominator. By LL8,

lim
x→5

x = 5.

By LL3,
lim
x→5

(3x) = 3 lim
x→5

x = 15.

Now, by LL7,
lim
x→5

4 = 4.

And by LL1,
lim
x→5

(3x+ 4) = lim
x→5

(3x) + lim
x→5

4 = 15 + 4 = 19.

On to the denominator. First,
lim
x→5

x2 = 25

by LL9. By LL7,
lim
x→5

9 = 9.

By LL2,
lim
x→5

(x2 − 9) = lim
x→5

x2 − lim
x→5

9 = 25− 9 = 16.

By LL11,

lim
x→5

√

x2 − 9 =
√

lim
x→5

(x2 − 9) =
√
16 = 4.

Finally, by LL5,

lim
x→5

3x+ 4√
x2 − 9

=
limx→5(3x+ 4)

limx→5

√
x2 − 9

=
19

4
.

This is a bit tedious, but also quite straightforward. It allows us to compute the limit and be
certain that it is the number we computed. We did this by building up a more complicated function
from its basic components from the bottom to the top. It is also possible to go the other way, top
to bottom. The logic is on shakier grounds but the calculation is typically shorter. Here is how
this limit could be found that way. We start with

lim
x→5

3x+ 4√
x2 − 9

=
limx→5(3x+ 4)

limx→5

√
x2 − 9

by LL5. If you have been paying attention, you know that LL5 can only be used if

lim
x→5

(3x+ 4) and lim
x→5

√

x2 − 9

both exist and the one in the denominator is not 0. We really do not know that yet. That is why
I said the logic is on shakier grounds. We can resolve the issue by saying we can charge ahead and
we will find out if the two limits exist and if the one in the denominator is 0. And if they do turn



out to exist and the denominator turns out not to be 0 then we were justified in using LL5. So let
us set doubts aside and proceed this way.

lim
x→5

3x+ 4√
x2 − 9

=
limx→5(3x+ 4)

limx→5

√
x2 − 9

by LL5

=
limx→5(3x+ 4)
√

limx→5(x2 − 9)
by LL11

=
limx→5(3x) + limx→5 4√
limx→5 x2 − limx→5 9

by LL1 and LL2

=
3 limx→5 x+ limx→5 4√
limx→5 x2 − limx→5 9

by LL3

=
3 limx→5 x+ limx→5 4√

52 − limx→5 9
by LL9

=
3(5) + limx→5 4√
52 − limx→5 9

by LL8

=
3(5) + 4)√

52 − 9
by LL7

=
19√
16

=
19

4
.

This is the approach the textbook takes in Example 1.
Notice that if you substitute x = 5 into

f(x) =
3x+ 4√
x2 − 9

you also get f(5) = 19/4. But simply substituting a into x to calculate

lim
x→a

f(x)

is not a safe thing to do. It does sometimes give the correct limit, as it did in this case, but in other
cases it may not. For example, substituting x = a into the function does not allow you to find the
following limits:

lim
x→0

H(x)

lim
x→0

|x|
x

lim
x→0

sin
(π

x

)

lim
x→1

x2 − 1

x− 1

lim
x→0

√
x2 + 4− 2

x3

where H(x) is the Heaviside function from Example 6 in Section 1.3. It would be good to at least
know when we can use simple subsitution to find the limit of a function. But that is not an easy
question to answer. We will take a closer look at it in the next section. But for now, we can show



that if f(x) is a polynomial or rational function whose denominator is not 0 at x = a then

lim
x→a

f(x) = f(a).

When the limit of a function f(x) can be calculated this way at x = a, we can say f has the Direct
Substitution Property at x = a. Polynomials and rational functions have the Direct Substitution
Property at every number in their domains. This is worth stating as a theorem. We will prove it
too, which is not difficult to do.

Theorem. If f(x) is a polynomial or a rational function and a is in the domain of f then

lim
x→a

f(x) = f(a).

Proof: First, suppose f(x) is a polynomial

f(x) = cnx
n + cn−1x

n−1 + · · ·+ c1x+ c0.

Every real number is in the domain of f . So whatever a is, we have

lim
x→a

f(x) = lim
x→a

(cnx
n + cn−1x

n−1 + · · ·+ c1x+ c0)

= lim
x→a

(cnx
n) + lim

x→a
(cn−1x

n−1) + · · ·+ lim
x→a

(c1x) + lim
x→a

c0 by LL1

= cn lim
x→a

xn + cn−1 lim
x→a

xn−1 + · · ·+ c1 lim
x→a

x+ lim
x→a

c0 by LL3

= cna
n + cn−1a

n−1 + · · ·+ c1a+ c0 by LL9 and LL7

= f(a).

Now, suppose f(x) = p(x)/q(x) is a rational function, so p(x) and q(x) are polynomials. If a is
in the domain of f then q(a) 6= 0. So

lim
x→a

f(x) = lim
x→a

p(x)

q(x)

=
limx→a p(x)

limx→a q(x)
by LL5

=
p(a)

q(a)

since p(x) and q(x) are polynomials and have the Direct Substitution Property at x = a. Notice
that

lim
x→a

q(x) = q(a) 6= 0,

which tells us that we were justified in using LL5. �

The direct substitution property of polynomials and rational functions often makes it very easy
to calculate their limits. For example,

lim
x→−2

(x3 + 3x2 − 7) = (−2)3 + 3(−2)2 − 7 = −8 + 3(4)− 7 = −3

lim
x→5

3x+ 4

x2 − 9
=

3(5) + 4

52 − 9
=

19

16

both by direct substitution. But be careful not to use the direct substitution property for a function
that may not have this property. For example, saying that

lim
x→5

3x+ 4√
x2 − 9

=
3(5) + 4√
52 − 9

=
19√
16

=
19

4

by direct substitution is not justified because the function f(x) = 3x+4√
x2−9

is neither a polynomial

nor a rational function. Even though 19/4 is the correct limit, using direct substitution to find



it is not justified because we do not know if this function has the direct substitution property.
The fact that the number 19/4 we obtained by direct substitution matches the limit we found and
justified earlier by using the limit laws suggests that it may well be that f(x) = 3x+4√

x2−9
is in fact

a function that has the direct substitution property at x = 5. In the next section, we will expand
our understanding of what kinds of functions do.

Even though we cannot simply substitute x = 5 into f(x) = 3x+4√
x2−9

to calculate

lim
x→5

3x+ 4√
x2 − 9

,

the direct substitution property does help to calculate this limit quickly and easily. We start, just
like before, by using the limit laws:

lim
x→5

3x+ 4√
x2 − 9

=
limx→5(3x+ 4)

limx→5

√
x2 − 9

by LL5

=
limx→5(3x+ 4)
√

limx→5(x2 − 9)
by LL11

Now we can use direct substitution to say

lim
x→5

(3x+ 4) = 3(5) + 4 = 19

lim
x→5

(x2 − 9) = 52 − 9 = 16

since 3x+ 4 and x2 − 9 are both polynomials. Hence

lim
x→5

3x+ 4√
x2 − 9

=
19√
16

=
19

4
.

The limit laws and the direct substitution property of polynomials and rational functions are
powerful tools to tackle limits, but they are not always enough. For example, we noted above that

lim
x→1

x2 − 1

x− 1

cannot be calculated by direct substitution. Although x2−1
x−1 is a rational function, x = 1 is not in

the domain because it makes the denominator 0. Trying to use LL5 fails for much the same reason:

lim
x→1

x2 − 1

x− 1
6= limx→1(x

2 − 1)

limx→1(x− 1)

because

lim
x→1

(x− 1) = 1− 1 = 0

and remember that LL5 is only valid if the limits of both the numerator and the denominator exist
and the limit of the denominator is not 0.

We need another idea to tackle such limits. In fact, it is an idea we have already used:

x2 − 1

x− 1
=

(x+ 1)(x− 1)

x− 1
= x+ 1 unless x = 1.

When we consider the limit as x → 1, it is exactly what happens when x = 1 that we do not care

about. This is because 0 < |x− a| in the δ− ǫ definition. Therefore we can replace (x+1)(x−1)
x−1 with

x+ 1 in the limit:

lim
x→1

x2 − 1

x− 1
= lim

x→1

(x+ 1)(x− 1)

x− 1
= lim

x→1
(x+ 1) = 1 + 1 = 2

by direct substitution since x+ 1 is a polynomial.



This idea is a really useful tool, spelled out in general in the following theorem. We have already
talked about the main idea in the proof.

Theorem. Let f and g be functions of real numbers such that f(x) = g(x) for every x is some
neighborhood of a except possibly at x = a. Then if either one of

lim
x→a

f(x) and lim
x→a

g(x)

exists then so does the other and

lim
x→a

f(x) = lim
x→a

g(x).

Proof: Suppose that f and g satisfy the conditions of the theorem and one of the two limits exists.
Since the functions f and g play symmetric roles in the statement, it does not matter which limit
exists. Let us say

lim
x→a

g(x) = L

exists. Then we know that for every ǫ > 0 there is a corresponding δ1 > 0 such that if

0 < |x− a| < δ1

then

|g(x)− L| < ǫ.

We also know that f(x) = g(x) for every x 6= a in some neighborhood (a− δ2, a+ δ2) where δ2 > 0
is some sufficiently small number. Now if x is closer to a then both of the two distances δ1 and δ2
then

|f(x)− L| = |g(x)− L| < ǫ.

So let δ = min(δ1, δ2). We will show that if

0 < |x− a| < δ

then

|f(x)− L| < ǫ.

Suppose

0 < |x− a| < δ.

Then

0 < |x− a| < δ ≤ δ1 =⇒ |g(x)− L| < ǫ.

and

0 < |x− a| < δ ≤ δ2 =⇒ f(x) = g(x).

Therefore

|f(x)− L| = |g(x)− L| < ǫ.

Hence

lim
x→a

f(x) = L = lim
x→a

g(x).

Now, if it is

lim
x→a

f(x) = L

that exists, then the same argument with f and g switched shows that

lim
x→a

g(x) = L = lim
x→a

f(x).

�



Look at Examples 3 and 4 for how this tool can be used. Remember exercise 1.3.2 about a rock
that is thrown upward on Mars? We are told that the rock’s height is y = 10t− 1.86t2 in meters at
time t in seconds. In part (b), of that exercise, you were asked to estimate the instantaneous velocity
of the rock at t = 1. We can now find that velocity precisely, without estimating. Remember that
the average velocity between t1 and t2 is

v =
∆y

∆t
=

y(t2)− y(t1)

t2 − t1
,

and we said that to calculate the instantaneous velocity at t = 1 we would want to let t get closer
and closer to 1 but not equal to 1 and see what number the average velocity between 1 and t
approaches. What we are saying is that the instantaneous velocity at 1 is

lim
t→1

y(t)− y(1)

t− 1
= lim

t→1

(10t− 1.86t2)−
(
10(1)− 1.86(12)

)

t− 1

This looks complicated, but is in fact not too difficult to calculate.

lim
t→1

(10t− 1.86t2)− (10(1)− 1.86(12)

t− 1
= lim

t→1

10t− 1.86t2 − 10(1) + 1.86(12)

t− 1

= lim
t→1

10(t− 1)− 1.86(t2 − 1)

t− 1

Remember that t2 − 1 = (t+ 1)(t− 1) and hence

10(t− 1)− 1.86(t2 − 1)

t− 1
=

10(t− 1)− 1.86(t+ 1)(t− 1)

t− 1

=
(t− 1)

(
10− 1.86(t+ 1)

)

t− 1
= 10− 1.86(t+ 1) unless t = 1.

But in the limit as t approaches 1, t is never 1, so we can say

lim
t→1

10(t− 1)− 1.86(t2 − 1)

t− 1
= lim

t→1

(
10− 1.86(t+ 1)

)

= lim
t→1

(10− 1.86t− 1.86)

= lim
t→1

(8.14− 1.86t)

= 8.14− 1.86

= 6.28

where we used direct substitution since 8.14− 1.86t is a polynomial.
Here is another example of a limit whose calculation takes a little more than just the limit laws:

lim
x→2

√
x−

√
2

x− 2
.

It is hard to guess what the value of the limit might be or if the limit even exists by thinking about
what happens as x approaches 3. For sure, both

√
x−

√
2 and x− 2 get arbitrarily close to 0, but

their quotient could be anything: a small number, a large number, or a medium size number. But

the same idea we used with x2−1
x−1 can help us here too. Notice that

(
√
x−

√
2)(

√
x+

√
2) =

√
x
2 −

√
2
2
= x− 2.

Hence √
x−

√
2

x− 2
=

√
x−

√
2

(
√
x−

√
2)(

√
x+

√
2)
.



We want to cancel the factor
√
x−

√
2, which is fine as long as it is not 0. It would be 0 if

√
x−

√
2 = 0 ⇐⇒

√
x =

√
2 ⇐⇒ x = 2.

So √
x−

√
2

x− 2
=

√
x−

√
2

(
√
x−

√
2)(

√
x+

√
2)

=
1

√
x+

√
2

unless x = 2.

But x 6= 2 as x → 2. By the theorem we proved above,

lim
x→2

√
x−

√
2

x− 2
= lim

x→2

1
√
x+

√
2

Now we can deploy the limit laws:

lim
x→2

1
√
x+

√
2
=

limx→2 1

limx→2(
√
x+

√
2)

by LL5

=
1

limx→2
√
x+ limx→2

√
2

by LL7 and LL1

=
1√

2 +
√
2

by LL10 and LL7

=
1

2
√
2

There is another way to do this, which is also worth learning. For any real number x,
√
x ≥ 0 =⇒

√
x+

√
2 ≥

√
2.

In particular,
√
x+

√
2 6= 0, and so √

x+
√
2

√
x+

√
2
= 1.

Therefore √
x−

√
2

x− 2
=

√
x−

√
2

x− 2

√
x+

√
2

√
x+

√
2

=
(
√
x−

√
2)(

√
x+

√
2)

(x− 2)(
√
x+

√
2)

=

√
x
2 −

√
2
2

(x− 2)(
√
x+

√
2)

=
x− 2

(x− 2)(
√
x+

√
2)

=
1

√
x+

√
2

unless x = 2

Now, just like before,

lim
x→2

√
x−

√
2

x− 2
= lim

x→2

1
√
x+

√
2
,

and the limit on the right-hand side can be found using the limit laws. You may remember seeing
this idea when you learned how to rationalize the denominator of a fraction. In this case, it does
not matter if the square root is in the numerator or in the denominator. Remember that

√
x+

√
2 is

called the conjugate of
√
x−

√
2. Multiplying the numerator and the denominator by this conjugate

helped us simplify the fraction. This same idea is used in Example 5 in the textbook.
The limit laws have certainly made our lives easier and will continue to do so. But there is a price

to pay: we need to prove them. We will not prove all of them, but we will prove a few to develop



an understanding of why they hold. The easiest one to prove is LL7, which was also exercise 1.3.38
on your homework:

lim
x→a

c = c

where a and c are any real numbers.

Proof: We need to show that for every ǫ > 0 there is a corresponding δ > 0 such that if

0 < |x− a| < δ

then
|c− c| < ǫ.

Since c− c = 0 and |0| = 0 < ǫ, it does not actually matter what x is. So any choice of δ > 0 is a
perfectly good one. E.g. if δ = 1, it is certainly true that if

0 < |x− a| < δ = 1

then
|c− c| = |0| = 0 < ǫ.

�

It is not much harder to prove LL8:
lim
x→a

x = a

where a is any real number.

Proof: We need to show that for every ǫ > 0 there is a corresponding δ > 0 such that if

0 < |x− a| < δ

then
|x− a| < ǫ.

The obvious choice is δ = ǫ. Now if

0 < |x− a| < δ = ǫ

then
|x− a| < ǫ.

�

The next one we will do is LL3: if limx→a f(x) exists then

lim
x→a

[cf(x)] = c lim
x→a

f(x)

for any real number c.

Proof: Let
L = lim

x→a
f(x).

We will show
lim
x→a

[cf(x)] = cL.

First, if c = 0 then
lim
x→a

[cf(x)] = lim
x→a

0 = 0 = 0(L)

by LL7. Now, suppose c 6= 0. We need to show that for every ǫ > 0 there is a corresponding δ > 0
such that if

0 < |x− a| < δ

then
|cf(x)− cL| < ǫ.



So let ǫ > 0. We want

|cf(x)− cL| < ǫ.

Note

|cf(x)− cL| = |c
(
f(x)− L

)
| = |c||f(x)− L|.

So we really want

|c||f(x)− L| < ǫ =⇒ |f(x)− L| < ǫ

|c| ,

where we could divide both sides of the inequality by |c| because we know c 6= 0 and hence |c| is
positive. Since

lim
x→a

f(x) = L,

there must exist some δ > 0 such that if

0 < |x− a| < δ

then

|f(x)− L| < ǫ

|c| .

We will show that this δ is what we are looking for, that is if

0 < |x− a| < δ

then

|cf(x)− cL| < ǫ.

Suppose

0 < |x− a| < δ.

Then

|cf(x)− cL| = |c||f(x)− L| < |c| ǫ

|c| = ǫ,

which is what we wanted to show. �

Next on my list is LL1, but we first need a result, which is very useful when constructing δ − ǫ
arguments:

Theorem. (The Triangle Inequality) For any a, b,∈ R,

|a+ b| ≤ |a|+ |b|.
One way to show this is true is to split it into four cases depending on whether a ≥ 0 or a < 0

and whether b ≥ 0 or b < 0. In fact, I suggest you try these four cases for yourself with specific
numbers for a and b. I will not spell out the whole proof here because it is spelled out quite clearly
in Appendix C in your textbook.

We are now ready to prove LL1:

lim
x→a

[f(x) + g(x)] = lim
x→a

f(x) + lim
x→a

g(x)

if the limits of f and g on the right-hand side both exist.

Proof: Let

L1 = lim
x→a

f(x) and L2 = lim
x→a

g(x).

We want to show

lim
x→a

[f(x) + g(x)] = L1 + L2.

We need to show that for every ǫ > 0 there is a corresponding δ > 0 such that if

0 < |x− a| < δ



then
∣
∣
(
f(x) + g(x)

)
− (L1 + L2)

∣
∣ < ǫ.

So let ǫ > 0. We want
∣
∣
(
f(x) + g(x)

)
− (L1 + L2)

∣
∣ < ǫ.

By the Triangle Inequality,
∣
∣
(
f(x)+g(x)

)
−(L1+L2)

∣
∣ = |f(x)+g(x)−L1−L2| = |f(x)−L1+g(x)−L2| ≤ |f(x)−L1|+|g(x)−L2|.

Notice that if we can make both |f(x)−L1|+ and |g(x)−L2| smaller than ǫ/2 then their sum will
be smaller than ǫ. Since

lim
x→a

f(x) = L1,

there must exist some δ1 > 0 such that if

0 < |x− a| < δ1

then

|f(x)− L1| <
ǫ

2
.

Similarly, since

lim
x→a

g(x) = L2,

there must exist some δ2 > 0 such that if

0 < |x− a| < δ2

then

|g(x)− L2| <
ǫ

2
.

The reason we used δ1 and δ2 is because there is no reason to believe that they have the same value.
While we know that we can make |f(x) − L1| < ǫ/2 if x is sufficiently close to a and we can also
make |g(x)−L2| < ǫ/2 is x is sufficiently close to a, what is sufficiently close likely means different
things for f and g. Now, we want to make δ equal to the smaller of δ1 and δ2. That is set

δ = min(δ1, δ2).

We will show that this δ is sufficiently small so that if

0 < |x− a| < δ

then
∣
∣
(
f(x) + g(x)

)
− (L1 + L2)

∣
∣ < ǫ.

Suppose

0 < |x− a| < δ.

Then
∣
∣
(
f(x) + g(x)

)
− (L1 + L2)

∣
∣ = |f(x) + g(x)− L1 − L2|
= |f(x)− L1 + g(x)− L2| ≤ |f(x)− L1|+ |g(x)− L2|

<
ǫ

2
+

ǫ

2
= ǫ,

which is what we wanted to show. �



This last argument is a little complex, but we learned a new trick: the divide and conquer
strategy by making f(x) and g(x) get closer to L1 and L2 respectively than half of ǫ.

Now, to prove LL2 that

lim
x→a

[f(x)− g(x)] = lim
x→a

f(x)− lim
x→a

g(x)

if the limits of f and g on the right-hand side both exist, we could do almost the same thing. In fact
all we would have to do is switch a few + signs to − signs and vice versa in the above argument.
Or we can do it even more easily by combining LL1 and LL3.

Proof:

lim
x→a

[f(x)− g(x)] = lim
x→a

[f(x) + (−1)g(x)]

= lim
x→a

f(x) + lim
x→a

[(−1)g(x)] by LL1

= lim
x→a

f(x) + (−1) lim
x→a

g(x) by LL3

= lim
x→a

f(x)− lim
x→a

g(x)

�

To prove LL4 and LL5, we could use similar ideas to the ones we used for proving LL1. The
arguments are a little more complicated than the one for LL1. We will not cover them in class, but
if curiosity does not let you rest, they are given in Appendix C in your textbook.

On to LL6:

lim
x→a

[f(x)]n =
[

lim
x→a

f(x)
]n

for any n ∈ Z
+ if the limit of f on the right-hand side exists.

Proof:

lim
x→a

[f(x)]n = lim
x→a

[f(x)f(x) · · · f(x)
︸ ︷︷ ︸

n factors

]

=
[

lim
x→a

f(x)
] [

lim
x→a

f(x)
]

· · ·
[

lim
x→a

f(x)
]

︸ ︷︷ ︸

n factors

by LL4

=
[

lim
x→a

f(x)
]n

�

LL9 is an easy consequence of LL6 and LL7:

lim
x→a

xn = an

for any n ∈ Z
+.

Proof: Let f(x) = x. Then

lim
x→a

xn = lim
x→a

[f(x)]n

=
[

lim
x→a

f(x)
]n

by LL6

=
[

lim
x→a

x
]n

= an by LL7

�



That is good enough. We will not prove LL10 and LL11, at least for now. Here is another useful
result we know already, but we have not proved it rigorously:

Theorem. Let f be a function of real numbers and let a ∈ R. Then

lim
x→a

f(x) = L

if and only if

lim
x→a+

f(x) = L and lim
x→a−

f(x) = L.

Proof: First, suppose

lim
x→a

f(x) = L.

We want to show that

lim
x→a+

f(x) = L and lim
x→a−

f(x) = L.

We will tackle the right limit first. We need to prove that for every ǫ > 0 there is a corresponding
δ > 0 such that if

a < x < a+ δ

then

|f(x)− L| < ǫ.

So let ǫ > 0. Since

lim
x→a

f(x) = L,

we know there is a δ > 0 such that if

|x− a| < δ

then

|f(x)− L| < ǫ.

We can use the same δ for the right limit. If

a < x < a+ δ

then it is certainly true that x is closer to a then a distance of δ, that is

|x− a| < δ

and hence

|f(x)− L| < ǫ.

This proves

lim
x→a+

f(x) = L.

An analogous argument with the same value of δ shows

lim
x→a−

f(x) = L.

Now, suppose

lim
x→a+

f(x) = L and lim
x→a−

f(x) = L.

We want to prove

lim
x→a

f(x) = L.

Since

lim
x→a+

f(x) = L,

there must exist some δ1 > 0 such that if

a < x < a+ δ1



then

|f(x)− L| < ǫ.

Similarly, since

lim
x→a−

f(x) = L,

there must exist some δ2 > 0 such that if

a− δ2 < x < a

then

|f(x)− L| < ǫ.

Notice that we once again used δ1 and δ2, just like in the proof of LL1 earlier, because there is no
reason to believe that they have the same value. We know that we can make |f(x) − L| < ǫ if x
is sufficiently close to a on the right and we can also make |f(x) − L| < ǫ if x is sufficiently close
to a on the left, but how close is sufficiently close likely means different things on the left and the
right. Now, we make δ equal to the smaller of δ1 and δ2:

δ = min(δ1, δ2).

We will show that this δ is sufficiently small that if

0 < |x− a| < δ

then

|f(x)− L| < ǫ.

Suppose

0 < |x− a| < δ.

Then either

a < x < a+ δ

or

a− δ < x < a.

In the first case, it is also true that

a < x < a+ δ =⇒ a < x < a+ δ1 =⇒ |f(x)− L| < ǫ.

In the other case, it is also true that

a− δ < x < a =⇒ a− δ2 < x < a =⇒ |f(x)− L| < ǫ.

In either case, we can conclude

|f(x)− L| < ǫ,

which is what we wanted to show. �

This result is typically used when we want to find the limit of a piecewise-defined function at
the boundary of the pieces, or a function with an absolute value in it. It can be used to find the
limit if the limit exists, like in Example 6 in the textbook, or to show that the limit does not exist,
like in Examples 7 and 8. In fact, we have already look at the limit in Example 7 in class and in
the notes for Section 1.3.

There are two more results in this section to complete our set of tools. Both are quite easy to
prove, but they do require δ − ǫ arguments.



Theorem. Let f and g be functions of real numbers such that

lim
x→a

f(x) and lim
x→a

g(x)

both exist. If there is a neighborhood of a such that f(x) ≤ g(x) for all x in that neighborhood
except possibly at x = a, then

lim
x→a

f(x) ≤ lim
x→a

g(x).

Proof: Suppose that the conclusion that

lim
x→a

f(x) ≤ lim
x→a

g(x)

is false. We will show that this leads to a contradiction. Let

L1 = lim
x→a

f(x) and L2 = lim
x→a

g(x).

So we are assuming that L1 ≤ L2 is false. Then L1 > L2 must be true. Therefore L1 − L2 is a
positive number. Let ǫ = (L1 − L2)/2, which is then also positive. Therefore there exists δ1 > 0
such that if

0 < |x− a| < δ1

then

|f(x)− L1| < ǫ =⇒ L1 − ǫ < f(x) < L1 + ǫ.

In particular,

L1 − ǫ < f(x) =⇒ L1 −
L1 − L2

2
< f(x) =⇒ L1 −

L1

2
+

L2

2
< f(x) =⇒ L1

2
+

L2

2
< f(x).

Similarly, there exists δ2 > 0 such that if

0 < |x− a| < δ2

then

|g(x)− L2| < ǫ =⇒ L2 − ǫ < g(x) < L2 + ǫ.

In particular,

g(x) < L2 + ǫ =⇒ g(x) < L2 +
L1 − L2

2
=⇒ g(x) < L2 +

L1

2
− L2

2
=⇒ g(x) <

L1

2
+

L2

2
.

Finally, we know that there is some neighborhood of a, namely some interval (a − δ3, a + δ3) for
some δ3 > 0 such that if x ∈ (a− δ3, a+ δ3) then f(x) ≤ g(x). Another way to say that is if

0 < |x− a| < δ3

then

f(x) ≤ g(x).

Now, all this means that if x 6= a is closer to a then δ1, δ2, and δ3 that is if

0 < |x− a| < min(δ1, δ2, δ3)

then

g(x) <
L1

2
+

L2

2
< f(x)

and

f(x) ≤ g(x).

But we clearly cannot have g(x) < f(x) and f(x) ≤ g(x) at the same time. �

Finally, the last result is so useful that it has its own name. Actually, it has several names:
Squeeze Theorem, Sandwich Theorem, Pinching Theorem, and sometimes Police Principle.



Theorem. Let f , g, and h be functions of real numbers such that

f(x) ≤ g(x) ≤ h(x)

for every x in some neighborhood of a except possibly at x = a. If

lim
x→a

f(x) and lim
x→a

h(x)

both exist and
lim
x→a

f(x) = lim
x→a

h(x) = L

then
lim
x→a

g(x) = L.

What the theorem says should make good intuitive sense: if the value of f(x) and the value of
h(x) can both be made to get close to L when x is close to a, then the value of g(x), which is
sandwiched between f(x) and h(x) must also get close to L. Figures 6 and 7 nicely capture this
intuitive idea in visual form. Take a look at Example 9 for how the theorem can be used before we
show why the theorem holds. I will do a similar example further down. Note that this theorem is
different from the previous one in that we do not need to know that the limit of g at x = a exists
to be able to conlude

L = lim
x→a

f(x) ≤ lim
x→a

g(x) ≤ lim
x→a

h(x) = L.

Proof: We need to show that for every ǫ > 0 there is a corresponding δ > 0 such that if

0 < |x− a| < δ

then
|g(x)− L| < ǫ.

First, since
lim
x→a

f(x) = L

there is some δ1 > 0 such that if
0 < |x− a| < δ1

then
|f(x)− L| < ǫ.

Similarly, since
lim
x→a

h(x) = L

there is some δ2 > 0 such that if
0 < |x− a| < δ2

then
|h(x)− L| < ǫ.

Finally, there is some δ3 such that if
0 < |x− a| < δ3

then
f(x) ≤ g(x) ≤ h(x).

Let δ be the smallest of δ1, δ2, and δ3 that is

δ = min(δ1, δ2, δ3).

We will show that if
0 < |x− a| < δ

then
|g(x)− L| < ǫ.



Suppose
0 < |x− a| < δ.

Then
0 < |x− a| < δ ≤ δ1 =⇒ |f(x)− L| < ǫ =⇒ L− ǫ < f(x) < L+ ǫ.

Also
0 < |x− a| < δ ≤ δ2 =⇒ |h(x)− L| < ǫ =⇒ L− ǫ < h(x) < L+ ǫ.

Finally,
0 < |x− a| < δ ≤ δ3 =⇒ f(x) ≤ g(x) ≤ h(x).

Putting the three pieces together, we get

L− ǫ < f(x) ≤ g(x) ≤ h(x) < L+ ǫ,

and so
|g(x)− L| < ǫ.

�

The Limit Laws and the other results we learned in this section also work for one-sided limits.
This is because one-sided limits are just special cases of the general limit. Here is ane example in
which we will use them for one-sided limits to show that

lim
x→0

[

x3 cos
(π

x

)]

= 0.

First note that we cannot just use LL4 to do this:

lim
x→0

[

x3 cos
(π

x

)]

6=
[

lim
x→0

x3
] [

lim
x→0

cos
(π

x

)]

since

lim
x→0

cos
(π

x

)

does not exist because cos
(
π

x

)
oscillates back and forth between -1 and 1 no matter how close x is

to 0. In fact, since −1 ≤ cos
(
π

x

)
≤ 1, the value of x3 cos

(
π

x

)
is always sandwiched between −x3

and x3. But we need to be careful about how because it depends on the sign of x which of these is
the upper bound and which is the lower bound. If x > 0 then x3 is also positive, so

−1 < cos
(π

x

)

< 1 =⇒ −x3 < x3 cos
(π

x

)

< x3.

Now,
lim

x→0+
x3 = 03 = 0

by LL9 or by the direct subtitution property of polynomials. Also,

lim
x→0+

(−x3) = −03 = 0.

Therefore

lim
x→0+

[

x3 cos
(π

x

)]

= 0.

by the Squeeze Theorem. Similarly, if x < 0 then x3 is negative, and so

−1 < cos
(π

x

)

< 1 =⇒ −x3 > x3 cos
(π

x

)

> x3.

Now,
lim

x→0−
x3 = 03 = 0

by LL9 or by the direct subtitution property of polynomials. Also,

lim
x→0−

(−x3) = −03 = 0.



Therefore

lim
x→0−

[

x3 cos
(π

x

)]

= 0.

by the Squeeze Theorem. Finally, since the left and the right limits are both 0,

lim
x→0

[

x3 cos
(π

x

)]

= 0.

We will close this section by looking at some limits of trigonometric functions. If you think about
the unit circle, it should make good sense that

lim
x→0

sin(x) = 0 and lim
x→0

cos(x) = 1.

While this is hardly a rigorous argument, it gives valuable intuition about why these limits are 0
and 1. We can make the thinking more rigorous by doing some geometry. Here is Figure 8(a) from
your textbook:

The light blue wedge in this diagram is a part of the unit circle. Point B is the point that corresponds
to the angle θ on the unit circle. The vertical coordinate of B is therefore sin(θ). This is the same
as the length of the line segment BC. Since BC is also one of the legs in the right triangle ABC, it
must be shorter than the hypotenuse AB. But AB is also a secant in the unit circle and is therefore
shorter than the corresponding arc AB. In fact, the shortest path between points A and B is the
line segment AB. The length of arc AB is given by the usual arc length formula rθ where r = 1 in
this case. So the length of arc AB is in fact θ. Putting these pieces together tells us

sin(θ) = BC < AB < arc AB = θ.

Since BC is the side of a triangle, it is also clear that 0 < BC. This of course only works if θ is a
small (smaller than π/2) positive angle, exactly as it looks in the diagram. But that is enough for
our purposes. So if θ is a small positive angle, then

0 < sin(θ) < θ,

that is sin(θ) is sandwiched between 0 and θ. Now,

lim
θ→0+

0 = 0

by LL7, and

lim
θ→0+

θ = 0

by LL8. By the Squeeze Theorem,

lim
θ→0+

sin(θ) = 0.

What if θ < 0? Now, −θ is positive, so by the argument above,

0 < sin(−θ) < −θ =⇒ 0 < − sin(θ) < −θ =⇒ 0 > sin(θ) > θ.



We can still use the Squeeze Theorem by noting that

lim
θ→0−

0 = 0

by LL7, and

lim
θ→0−

θ = 0

by LL8, and therefore

lim
θ→0−

sin(θ) = 0.

We can now conclude that

lim
x→0

sin(x) = 0.

That

lim
x→0

cos(x) = 1

can be shown similarly, using this time that

0 < AC < AB < arc AB = θ,

and

cos(θ) = OC = OA−AC = 1−AC

and hence

1− 0 > 1−AC > 1− θ =⇒ 1 > cos(θ) > 1− θ.

You can now use the Squeeze Theorem to show that

lim
θ→0+

cos(θ) = 1,

and the even symmetry of the cosine function to show that the left limit is also 1, and hence the
two-sided limit is 1. Try writing down this argument from beginning to end on your own.

Interestingly, it is now quite easy to show that

lim
x→a

sin(x) = sin(a)

for any a ∈ R. That is the sine function also has the direct substitution property at any real
number. The idea is to introduce another variable h such that h = x− a. If x is close to a then h
is close to 0, and vice versa, if h is close to 0 then x is close to a. In fact,

|h− 0| = |h| = |x− a|,
that is h is exactly the same distance from 0 as x is from a. Since x = a+h and sin(x) = sin(a+h),
it follows that

lim
x→a

sin(x) = lim
h→0

sin(a+ h).

We now need the addition formula for the sine function (remember from trigonometry or pre-
calculus?):

sin(α+ β) = sin(α) cos(β) + cos(α) sin(β)

for any α, β ∈ R. So

sin(a+ h) = sin(a) cos(h) + cos(a) sin(h).

Therefore

lim
h→0

sin(a+ h) = lim
h→0

[sin(a) cos(h) + cos(a) sin(h)]

= lim
h→0

[sin(a) cos(h)] + lim
h→0

[cos(a) sin(h)] by LL1



Notice that sin(a) and cos(a) do not depend on h, so they are constant factors. Hence

lim
h→0

[sin(a) cos(h)] + lim
h→0

[cos(a) sin(h)] = sin(a) lim
h→0

cos(h) + cos(a) lim
h→0

sin(h) by LL3

= sin(a) · 1 + cos(a) · 0
= sin(a)

by what we already know about the limits of sin(x) and cos(x) as x → 0.
One can show similarly that cosine also has the direct substitution property at any real number.

I will leave it to you to come up with the argument. You will need the addition formula for the
cosine function.

In the previous section, we looked at the limit of the function f(x) = sin(x)
x

as x → 0. Based on
a table of values and the graph, we guessed that

lim
x→0

sin(x)

x
= 1

but we did not have the tools show that our guess is in fact correct. We will now take a more
rigorous look at this limit.

We have already argued above that if x is a positive number close to 0 then sin(x) < x. Hence

sin(x)

x
< 1.

We will now find a lower bound. Turn your attention to Figure 8(a) from the textbook again. Your
geometric intuition likely tells you that walking from point A to point B via the line segment AE
followed by the line segment EB is a longer path than following the arc AB. If that is not clear,
it may help to look at Figure 8(b) in your textbook to see how a polygon circumscribed around
a circle, which consists of such broken line segment pieces as the path along AEB, has a longer
perimeter than the circumference of the circle. Based on such geometric intuition, we can say

arc AB < AE + EB

Now notice that line segment EB is shorter than line segment ED because ED is the hypotenuse
of the right triangle EBD whereas EB is only one of the legs in that triangle. Hence

arc AB < AE + EB < AE + ED = AD.

Remember that when we looked at trigonometric functions earlier this semester, we saw that AD
is exactly the way to visualize tan(θ) because

tan(θ) =
AD

OA
=

AD

1
= AD.

Putting these pieces together, we get

θ = arc AB < AD = tan(θ) =
sin(θ)

cos(θ)
.

Since θ is a small positive angle, cos(θ) is also positive. Hence

θ <
sin(θ)

cos(θ)
=⇒ θ cos(θ) < sin(θ) =⇒ cos(θ) <

sin(θ)

θ
.

Hence if x is positive and close to 0,

cos(x) <
sin(x)

x
< 1.

We already know

lim
x→0+

cos(x) = 1.



We also know
lim

x→0+
1 = 1

by LL7. We can now conclude

lim
x→0+

sin(x)

x
= 1

by the Squeeze Theorem. In fact, it does not matter if x is positive or negative because

sin(−x)

−x
=

− sin(x)

−x
=

sin(x)

x

for all real numbers x. In other words, f(x) = sin(x)
x

is an even function. Therefore

lim
x→0−

sin(x)

x
= lim

x→0+

sin(x)

x
= 1.

It now follows that

lim
x→0

sin(x)

x
= 1.

Equipped with what we have learned about the limits of trigonometric functions, we can now
work out all kinds of limits that involve them. Look at Examples 10 and 11 in the textbook. I
believe the argument in Example 10 actually has a typo in it. It probably means to go like this:

lim
x→0

sin(7x)

4x
= lim

x→0

[
7

4

sin(7x)

7x

]

=
7

4
lim
x→0

sin(7x)

7x
by LL3

Now, x → 0 exactly if 7x → 0. So we can substitute θ = 7x into the limit:

lim
x→0

sin(7x)

7x
= lim

θ→0

sin(θ)

θ
= 1.

Hence

lim
x→0

sin(7x)

4x
=

7

4
lim
x→0

sin(7x)

7x
=

7

4
.

Another such example would be to find

lim
x→0

sin(7x)

sin(4x)
.

It may be tempting to use LL5, but that does not help because the limit of the denominator turns
out to be 0. Here is why. If x → 0 then 4x → 0 as well. So we can substitute h = 4x as in

lim
x→0

sin(4x) = lim
h→0

sin(h) = 0.

What we can do instead is multiply the numerator and the denominator by 4x, which we know is
not 0 because x → 0 means x is getting close to 0 but x is not 0. So

sin(7x)

sin(4x)
=

sin(7x)

sin(4x)

4x

4x
=

sin(7x)

4x

4x

sin(4x)
=

sin(7x)
4x

sin(4x)
4x

.

Now

lim
x→0

sin(7x)

sin(4x)
= lim

x→0

sin(7x)
4x

sin(4x)
4x

=
limx→0

sin(7x)
4x

limx→0
sin(4x)

4x

by LL5



We already know

lim
x→0

sin(7x)

4x
=

7

4
.

For the second factor, x → 0 if and only if 4x → 0, so we can substitute θ = 4x in

lim
x→0

sin(4x)

4x
= lim

θ→0

sin(θ)

θ
= 1.

Therefore

lim
x→0

sin(7x)

sin(4x)
=

7

4
.


