
Notes for Section 1.5

Intuitively, a function is continuous if its graph is a continuous curve, that is it can be drawn
without lifting up your pencil (pen, whatever writing utensil you use) from the paper (whiteboard,
whatever you are writing on). But this intuitive notion would not make for a good formal definition
because it depends on physical devices and their limitations and also on who is actually doing the
drawing. In fact, there are continuous functions whose graphs would be physically quite impossible
to draw with or without lifting up the drawing utensil. Therefore we need a more precise definition
of what it means for a function to be continuous.

We saw in the previous section that polynomials and rational functions have the direct substi-
tution property:

lim
x→a

f(x) = f(a)

if f is a polynomial or a rational function whose domain includes a. This section is about what
other kinds of functions have the direct substitution property and what functions do not. Actually,
the official name of what we have been referring to as the direct substitution property is continuity.

Definition. Let f be a function of real numbers and a ∈ R. We say f is continuous at a if

lim
x→a

f(x) = f(a).

A function f that is not continuous at a ∈ R is called discontinuous. Note that limx→a f(x) can
only be equal to f(a) if both the limit and f(a) actually exist. In other words, continuity has three
essential ingredients:

1. f(a) must exist, that is a must be in the domain of f ,
2. the limit limx→a f(x) must exist,
3. the limit limx→a f(x) must be equal to f(a).

If any one of these three ingredients is missing, then f is discontinuous at a.
Notice that the definition of continuity we have here is a local property: it tells us what it means

for a function to be continuous at a specific point, whereas the intuitive notion of a graph that can
be drawn without lifting up the pencil is a global property. In fact, it may be hard to see how one
is related to other at this point. This will become clearer if we look at how a function can fail to
be continuous at a point.

Example 1 illustrates three ways for a function to be discontinuous at 1, 3, and 5. In fact,
the three discontinuities in this example correspond exactly to what happens if one of the three
ingredients of continuity is missing. Notice that if you want to trace the graph of the function in
this example, you need to lift up your pencil at each of the three discontinuities.

Example 2 further illustrates different types of discontinuities with functions defined by formulas
and also introduces their names. This is not to suggest that these are the only ways a function can
fail to be continuous at a point, but these are common ways, which is why each has a name. Here
are the precise definitions of these three kinds of discontinuities.

Definition. Let f be a function of real numbers and a ∈ R. We say

1. f has a removable discontinuity at a if limx→a f(x) exists but limx→a f(x) 6= f(a) (note that
one reason for limx→a f(x) 6= f(a) could be that f(a) does not exist),

2. f has a jump discontinuity at a if limx→a+ f(x) and limx→a− f(x) both exist but are not
equal,

3. f has an infinite discontinuity at a if the value of f(x) becomes arbitrarily large as x gets
close to a either from the left or from the right, or both.

The names for jump and infinite discontinuity should make good sense. But why removable
discontinuity? The idea there is that if f has a removable discontinuity at a then L = limx→a f(x)



must exist and therefore we can define a function g by

g(x) =

{

f(x) if x 6= a

L if x = a
.

Now, g is closely related to f in that they have the same values at every x except at x = a.
Therefore

lim
x→a

g(x) = lim
x→a

f(x) = L = g(a)

by one of the theorems we learned in Section 1.4 (see p. 38). Hence g is continuous at a. So we
could easily remove the discontinuity of f by changing the behavior of f at only one point.

A function f that is continuous at a point a behaves well there in the sense that its value is what
you would think it should be based on what number the value of f approaches as x gets close to a.
Sometimes a function shows that good behavior on one side of a point a but not on the other. For
example, the function f : R≥0 → R defined by f(x) =

√
x does on the right of 0 but not on the

left:

In such a case, we say f is right (or left continuous), which we can define much the same way we
defined continuity except in terms of left and right limits. See Definition 2.

I pointed out already that continuity is a local property. The intuitive notion of continuity as
having a graph that can be drawn without lifting up the pencil really corresponds to a lack of breaks
or discontinuities in the graph. In other words, a function whose graph can be drawn without lifting
up the pencil is one that is continuous at every point in its domain, or at least at every point of an
interval over which the graph is drawn. This is the idea behind Definition 3 of the continuity over
an interval. Note the special treatment of the endpoints if they are included in the interval.

As an example, consider the square root function f(x) =
√
x over the interval [0,∞). It is

continuous over this interval because if a > 0 then

lim
x→a

√
x =

√
a

by LL10 and

lim
x→0+

√
x =

√
0 = 0

also by LL10, only this time we applied LL10 to the right limit.
We define similarly what it means for a function to be continuous on its domain:

Definition. Let f be a function of real numbers. Then f is continous on its domain (or just
continuous) if f is continuous at every a ∈ D(f), except that if a is a left or right endpoint in the
domain then only right/left continuity is required at a.

For example, we have just seen that f(x) =
√
x is continuous on its natural domain R

≥0.
Continuity is a very convenient property when it comes to evaluating limits, but how do we know

which functions are continuous without having to evaluate limits? We can give an answer to this



question that is similar to how introducing the limit laws helped us tackle many limits. A function
that is contsructed from continuous ingredients using standard algebra also has to be continuous
according to the following theorem, which is Theorem 4 in the textbook, except for the last part I
added.

Theorem. Let f and g be functions of real numbers that are both continuous at the real number

a. Then the following functions are also continuous at a:

1. f + g,
2. f − g,
3. cf for any constant factor c ∈ R,

4. fg,
5. f/g if g(a) 6= 0,
6. fn for any positive integer n.

Proof: These assertions easily follow from the corresponding limit laws. I will prove the first one
and leave the rest to you since the arguments are basically the same.

To prove that f + g is continuous at a, we need to show that

lim
x→a

(f + g)(x) = (f + g)(a).

We can do it this way:

lim
x→a

(f + g)(x) = lim
x→a

[f(x) + g(x)]

= lim
x→a

f(x) + lim
x→a

g(x) by LL1

= f(a) + g(a) since f and g are continuous at a

= (f + g)(a).

�

Note that Theorem 4 is also true for one-sided limits.
Now we know how to build more complex continuous functions from simple continuous ingredi-

ents. But what are these simple continuous ingredients? We already know from Section 1.4 that
polynomials and rational functions have the direct substitution property at every number a in their
domains. We actually proved this in Section 1.4. This is restated in Section 1.5 as Theorem 5 using
the language of continuity.

We also showed in Section 1.4 that the sine and the cosine functions have the direct substitution
property at every real number a. The following theorem (Theorem 6 in the text, except I added the
part about exponential and log functions) gives a more comprehensive list of continuous functions.

Theorem. The following types of functions are continuous on their domains:

1. polynomials,

2. rational functions,

3. root functions,

4. trigonometric functions,

5. exponential and logarithmic functions.

Proof: We already proved in Section 1.4 that polynomials have the direct substitution property at
every a ∈ R, and rational functions also do at every a ∈ R that does not make the denominator 0.

That root functions f(x) = n

√
x are continuous follows directly from LL10. Note that if n is even

then 0 is the left endpoint of the domain [0,∞) and therefore only right continuity is needed there.
This special case can be handled in exactly the same way we showed above that the square root
function is continuous on [0,∞).



We showed in Section 1.4 that sine and cosine have the direct substitution property at every real
number a, that is they are continuous at every a ∈ R. That the tangent function is continuous at
every real number in its domain (that is at every a 6= π/2 + kπ for k ∈ Z) follows by noting that

tan(x) = sin(x)
cos(x) and using Theorem 4 or just LL5. The real numbers in the domain of tangent are

exactly those that do not make the denominator 0. Other trigonometric functions such as sec(x),
csc(x), and cot(x) can be shown to be continuous on their domains by analogous arguments.

We do not have the necessary tools at this point to prove that exponential and logarithmic
functions are continuous, which is probably why the textbook does not mention these. But I
wanted you to know already that such functions are also continuous. �

One way to construct more complicated functions from simpler ones is composition. It turns out,
composition also plays nicely with continuous functions: composing continuous functions results
in a continuous function under appropriate conditions. Theorem 7 in the textbook is a somewhat
more general result. Its proof is in Appendix C.

Theorem. Let f and g be functions of real numbers and let a and b be real numbers such that

lim
x→a

g(x) = b

and f is continuous at b. Then

lim
x→a

f(g(x)) = f(b).

Proof: The proof is relatively straightforward, but does require a δ− ǫ argument. We want to show

lim
x→a

f(g(x)) = f(b),

that is for any ǫ > 0 there exists a corresponding δ > 0 such that if

0 < |x− a| < δ

then
|f(g(x))− f(b)| < ǫ.

So let ǫ > 0. Since f is continuous at b,

lim
y→b

f(y) = f(b).

I used y instead of x here for a reason: we will need x later on. But do not let this throw you off.
It does not matter what we call the input variable to f . What matters is that when this input
variable gets closer and closer to b, the value of f at this input variable must get closer and closer
to f(b) because f is continuous at b. This means that there must exist some δ1 > 0 such that if

0 < |y − b| < δ1

then
|f(y)− f(b)| < ǫ.

So if we make sure that the input to f is closer to b than a distance of δ1, then we know that the
value of f at that input is closer to f(b) than ǫ. Remember that we usually require 0 < |y − b| so
that we know y 6= b, because when y = b, the function f may not even have a value. But that is
not a concern here. We know f is continuous at b, and therefore f(b) exists. In fact, if y = b, then

|f(y)− f(b)| = |f(b)− f(b)| = |0| = 0,

which is certainly less than the positive number ǫ. Therefore it is enough for us to know that

|y − b| < δ1

to be able to conclude
|f(y)− f(b)| < ǫ.



In the end, we want to show that f(g(x)) can be made to get arbitrarily close to f(b). So it is
g(x) that we want within a distance of δ1 to b. By substituting g(x) for y in the above, we get that
whenever the value oif g(x) is such that

|g(x)− b| < δ1,

then

|f(g(x))− f(b)| < ǫ.

But we can in fact make the value of |g(x)− b| as small as we need to because the limit of g(x) is
exactly b as x → a. So there exists a δ > 0 such that if

0 < |x− a| < δ

then

|g(x)− b| < δ1.

This δ does exactly what we want. Suppose

0 < |x− a| < δ.

Then

|g(x)− b| < δ1.

Therefore

|f(g(x))− f(b)| < ǫ.

That such a δ > 0 exists is exactly what we needed to show. �

Here is an example how Theorem 7 could be used to calculate

lim
x→0

√

sin(x)

x
.

We already know from Section 1.4 that

lim
x→0

sin(x)

x
= 1.

We also know that g(x) =
√
x is continuous on [0,∞), and hence it is continuous at x = 1. By

Theorem 7,

lim
x→0

√

sin(x)

x
=

√
1 = 1.

Theorem 8, stated below, is what we are really after. It is an immediate consequence of this last
result. The proof in the textbook is short and simple enough, so I will not repeat it here.

Theorem. Let f and g be functions of real numbers and let a such that g is continuous at a and

f is continuous at b = g(a). Then f ◦ g is continuous at a.

Here is an example how Theorems 4, 6, and 8 can be used together to show that a function is
continuous. Let

f(x) =
1

√

sin2(x) + 1
.

We will argue that f is continuous at every a ∈ R. First, note that sin(x) is continuous at every
a ∈ R by Theorem 6. Also, the polynomial g(x) = x2 + 1 is continuous at every real number by
Theorem 6. So by Theorem 8, the composite function

g(sin(x)) = sin2(x) + 1



is also continuous at every real number. Since sin2(x) ≥ 0 and hence sin2(x) + 1 ≥ 1, the number
under the square root is always positive. By Theorem 6, the square root function is continuous at
positive numbers, and so it is is continuous at x ≥ 1. Hence the composite function

√

sin2(x) + 1

is continuous at every a ∈ R.
Now, the constant function h(x) = 1 is a polynomial and hence continuous at every a ∈ R

by Theorem 6. Finally, since sin2(x) + 1 is always positive,
√

sin2(x) + 1 > 0 and therefore the
denominator is never 0. By Theorem 4, the quotient

f(x) =
1

√

sin2(x) + 1

is continuous at every a ∈ R.
The last thing in this section on continuous functions is the Intermediate Value Theorem. The

theorem is clearly stated in the book, so I will not repeat it here. What the theorem says should be
intuitively clear if you think of continuous functions as ones whose graphs can be drawn without
lifting up your pencil. Because you do not lift your pencil as you draw the graph between (a, f(a)
and (b, f(b)), the graph must cross the horizontal line y = N at some point. This is illustrated
in Figure 6. Of course, the graph could cross that horizontal line more than once, which is also
illustrated in Figure 6. Even though what the theorem says makes good sense, the proof is beyond
the level of our course. The reason the theorem holds has to do with how the real numbers fill the
number line without leaving any gaps.

Note that the Intermediate Value Theorem (IVT from now on) gives no clue how to calculate a
value c where f(c) = N . Thus it is more of a theoretical result than a practical one. It is used in
proving other theorems rather than in solving computational problems.

The book gives one example (Example 8) for how the IVT can be used in a practical context.
Here is another. We will show that the equation

cos(x) = x

has a solution between 0 and π/2. Let

f(x) = cos(x)− x

Note that f is continuous at every x ∈ R because g(x) = cos(x) and h(x) = x are continuous
by Theorem 6 (trig function and polynomial) and hence their difference f(x) = g(x) − h(x) is
continuous on all of R by Theorem 4. In particular, f is continuous on [0, π/2]. Now,

f(0) = cos(0)− 0 = 1

f
(π

2

)

= 1− π

2
< 0

So f(0) > 0 > f(π/2). By the IVT, there must exist a point c ∈ (0, π/2) such that f(c) = 0. That
is

cos(c)− c = 0 =⇒ cos(c) = c.

So the equation cos(x) = x has a solution c between 0 and π/2. How to find that solution is a
different matter.

It is worth noting that continuity on the closed interval [a, b] is an essential requirement for the
function f in the IVT. If f were not continuous, it could easily jump over a value between f(a)



and f(b). For an example, consider the function f whose graph is given below.

Notice that f(0) = 0 and f(5) = 5. Even though f(0) < 3 < f(5), there is no point c in [0, 5] such
that f(c) = 3.


