
MCS 119 Exam 2 Solutions

1. (10 pts) Find an equation of the tangent line to the curve y = x
√
x that is parallel to the

line y = 1 + 3x.

To be parallel to y = 1 + 3x, the two lines must have the same slope. So we are looking
for the value of x where the derivative of the curve is 3:

3 =
dy

dx
=

d

dx
x
√
x =

d

dx
x3/2 =

3

2
x1/2.

Now

3

2
x1/2 = 3 =⇒ x1/2 =

2

3
3 = 2 =⇒

√
x = 2 =⇒ x = 4.

When x = 4, y = 4
√
4 = 8. So the tangent line has slope 3, and passes through the point

(4, 8). Therefore its equation is y = 3x+ b where b satisfies 8 = 3(4) + b, so b = −4. Hence
the tangent line in question is y = 3x− 4.

2. (5 pts each)
(a) If f is a differentiable function, find an expression for the derivative of

y =
1 + xf(x)√

x
.

By the Quotient Rule and the Product Rule,
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)√

x−
(

1 + xf(x)
)

d
dx

√
x

√
x
2

=
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2x
√
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=
2x(f(x) + 2x2f ′(x)− 1− xf(x)

2x
√
x

=
x(f(x) + 2x2f ′(x)− 1

2x
√
x

(b) Write |x| =
√
x2 and use the Chain Rule to show that

d

dx
|x| = x

|x| .
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3. (10 pts) Use the definition of the derivative to prove the Product Rule. (Hint: Express

f(x + h) as f(x) + ∆f where ∆f = f(x + h) − f(x), or express f(x) as f(a) + ∆f where
∆f = f(x) − f(a), depending on which version of the definition of the derivative you are
using.)

We want to prove that if f(x) and g(x) are both differentiable functions at x = a then

(fg)′(a) = f ′(a)g(a) + f(a)g′(a).

Here is the argument we gave in class. Or see p. 107 in your textbook.
By the definition of the derivative,

(fg)′(a) = lim
x→a

f(x)g(x)− f(a)g(a)

x− a
.

Now, let ∆f = f(x) − f(a) and ∆g = g(x) − g(a) and substitute f(x) = f(a) + ∆f and
g(x) = g(a) + ∆g:

lim
x→a

f(x)g(x)− f(a)g(a)

x− a
= lim

x→a

(f(a) + ∆f)(g(a) + ∆g)− f(a)g(a)

x− a

= lim
x→a

f(a)g(a) + ∆fg(a) + f(a)∆g +∆f∆g − f(a)g(a)

x− a

= lim
x→a

∆fg(a) + f(a)∆g +∆f∆g

x− a

= lim
x→a

∆fg(a)

x− a
+ lim

x→a

f(a)∆g

x− a
+ lim

x→a

∆f∆g

x− a
.

Now, since g(a) does not depend on x, it is constant factor and by Limit Law #3,

lim
x→a

∆fg(a)

x− a
= g(a) lim

x→a

∆f

x− a

= g(a) lim
x→a

f(x)− f(a)

x− a

= g(a)f ′(a).

Similarly,

lim
x→a

f(a)∆g

x− a
= f(a)g′(a).

Finally, by Limit Law #4,

lim
x→a

∆f∆g

x− a
=

[

lim
x→a

∆f
]

[

lim
x→a

∆g

x− a

]

.



Of this

lim
x→a

∆g

x− a
= g′(a),

while

lim
x→a

∆f = lim
x→a

(

f(x)− f(a)
)

= lim
x→a

f(x)− lim
x→a

f(a) by LL#2

= lim
x→a

f(x)− f(a) by LL#7

Since f(x) is a differentiable at x = a, it must also be continuous there. Hence limx→a f(x) =
f(a). Now

lim
x→a

f(x)− f(a) = f(a)− f(a) = 0.

Putting the pieces together, we have obtained

(fg)′(a) = g(a)f ′(a) + f(a)g′(a),

which is what we wanted to show.

4. (10 pts) The equation x2 + 4y2 = 9 describes the ellipse shown in the diagram below.
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Find the equation of the tangent line to this ellipse at the point (1,−
√
2).

We can do this by implicit differentiaton, treating y as a function y(x). First, we differ-
entiate both sides of the equation

d

dx
(x2 + 4y2) =

d

dx
9

2x+ 4(2y)
dy

dx
= 0

We can now solve this linear equation for dy
dx :

2x+ 4(2y)
dy

dx
= 0

8y
dy

dx
= −2x
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dx
=

−2x

8y
= − x

4y

At (x, y) = (1,−
√
2):
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= − 1

4(−
√
2)

=
1

4
√
2
.



This is the slope of the tangent line. So its equation is y = 1

4
√
2
x+b. The line passes through

(1,−
√
2), so

−
√
2 =

1

4
√
2
1 + b =⇒ b = −

√
2− 1

4
√
2
= −4

√
2
√
2 + 1

4
√
2

= − 9

4
√
2
.

So the equation of the tangent line is

y =
1

4
√
2
x− 9

4
√
2
.

5. Extra credit problem. In this problem, you will use the Product Rule to prove the Power
Rule.
(a) (4 pts) Use the definition of the derivative to show that

d

dx
x = 1.

d

dx
x = lim

h→0

(x+ h)− x

h
= lim

h→0

h

h
= lim

h→0
1 = 1

(b) (6 pts) Use the Product Rule to find d
dxx

2, d
dxx

3, d
dxx

4, etc until you see a pattern. Use

the observed pattern to figure out d
dxx

n for any positive integer n.

d

dx
x2 =

d

dx
(x · x) = d

dx
x x+ x

d

dx
x = x+ x = 2x

d

dx
x3 =

d

dx
(x2 · x) = d

dx
x2 x+ x2

d

dx
x = 2xx+ x2 = 2x2 + x2 = 3x2

d

dx
x4 =

d

dx
(x3 · x) = d

dx
x3 x+ x3

d

dx
x = 3x2x+ x3 = 3x3 + x3 = 4x3

The pattern that appears is d
dxx

n = nxn−1. In fact, we can see why the pattern must
continue. If it is in fact true that

d

dx
xn = nxn−1

for some positive integer n, then

d

dx
xn+1 =

d

dx
(xn · x)

=
d

dx
xn x+ xn

d

dx
x

= nxn−1x+ xn

= nxn + xn

= (n+ 1)xn.

That is the pattern continues to hold for n + 1. And then for n + 2, n + 3, etc. Since
we saw that d

dxx
n = nxn−1 holds when n = 1 and n = 2, it must also be true for

n = 3, 4, 5, . . ., and ultimately for any positive integer.

What we just did is a perfectly rigorous method of proving d
dxx

n = nxn−1 for any
positive integer n. It is called mathematical induction.


