
MCS 119 Review Sheet

Here is a list of topics we have covered so far. Your review should certainly include your homework
problems, as some of these will show up on the exam. You should also review the problems in your
Webwork homework as the problem solving strategies you practiced while working on those may
prove useful in solving problems on the exam.

The word ”understand” is often used below. The definition of understanding is that you un-
derstand something when you know why it is true and can give a coherent and correct argument
(proof) to convince someone else that it is true.

• Functions
– Definition of a function, what makes a rule a function, examples and non-examples.

Four standard ways to represent a function: verbal description, formula, table of values,
graph.

– Domain, codomain, and range.
– Functions whose domain and codomain are subsets of R.

∗ The vertical line test.
∗ Piecewise defined functions, examples, the absolute value function.
∗ Even and odd functions, definitions, examples, symmetries of their graphs.
∗ Increasing and decreasing functions, definitions, examples.

• A catalog of essential functions.
– Linear functions, slope, y-intercept, how to find the equation of a line.
– Power functions f(x) = xn, how to make sense of positive and negative integer expo-

nents, rational number exponents and roots, irrational exponents.
– Families of curves as the exponent changes in f(x) = xn, shape of the graph if n > 1, if

0 < n < 1, if n < 0.
– Polynomials, coefficients, degree, leading term, graphs of polynomials.
– Rational functions, domain of a rational function, graphs of rational functions, vertical

asymptotes and other discontinuities.
– Exponential functions f(x) = ax, shape of the graph for different values of the base,

a > 0.
– Logarithmic functions, definition of loga(x), connection to exponential functions, shape

of the graph depending on a.
– Trigonometric functions, definitions in a right triangle, definitions extended via the

unit circle, graphs of trig functions and their symmetries, periodic behavior, a few
fundamental trig identities, such as cos(x) = sin(π/2− x), tan(x) = sin(x)/ cos(x), and
sin2(x) + cos2(x) = 1.

• New functions from old functions
– Transformations of functions: g(x) = f(x) + c, g(x) = cf(x), g(x) = f(x + c), and

g(x) = f(cx). Understand what these do to the graph of f depending on the value of c.
Also, understand how you can combine these transformation (i.e. in what order to do
the shift, stretch/compression, reflection, if the order matters).

– Composition of functions, the meaning of f ◦ g, when can you compose two functions
and when can you not, how composition affects the domain.

• Limits of functions
– The informal meaning of limx→a f(x) = L. Understand what it means that f(x) gets

arbitrarily close to L as x gets sufficiently close to a. Understand what it means when



the limit does not exist. Can you think of some examples of functions whose limits do
not exist somewhere?

– Guessing limits by substituting values of x near a into f(x) and the dangers of this
approach (remember limx→0 sin(π/x)). Using the graph of f to guess the limit and the
dangers of this approach.

– One-sided limits, informal definitions of left and right limits. Understand what the
definitions mean, how they are similar to the ordinary limit, and how they are different.

– The connection between ordinary limit and one-sided limits: limx→a f(x) exists and
equals a number L if and only if limx→a− f(x) and limx→a+ f(x) both exist and equal
L. Do you know how to prove this?

– The formal definition of the limit. Understand what the δ− ǫ definition means and how
proving limx→a f(x) = L using a δ− ǫ argument is different from guessing the limit. Be
able to construct δ − ǫ arguments to prove limx→a f(x) = L in some simple cases, such
as for a linear function of the form f(x) = 3x− 5.

– Understand how a function f that does not have a limit at a point a would fail to satisfy
the δ − ǫ definition. Can you think of an example?

– The Limit Laws. Understand why they hold, how to use them, and when they cannot
be used.

– The Direct Substitution Property for limits of polynomials and rational functions. Un-
derstand why it holds (proof) when it can be used and when it cannot.

– Replacing f(x) with another function g(x) in limx→a f(x) as long as f(x) = g(x) for all
x except possibly at x = a. Understand why this is allowed and how it can be used to
evaluate limits.

– Theorem: If f(x) ≤ g(x) for every x in some neighborhood of a and limx→a f(x) and
limx→a g(x) both exist then limx→a f(x) ≤ limx→a g(x). Understand why this is true
(proof).

– The Squeeze Theorem. Understand why it holds (proof) and how it can be used to
evaluate limits.

– The limit of a composite function: if limx→a g(x) = b and limx→b f(x) = L, then
limx→a f(g(x)) = L.

– Using tools strategically to evaluate limits. Understand how the Limit Laws, the Direct
Substitution Property, and other results about limits can be combined with appropri-
ate algebraic manipulations (e.g. factoring, reducing and expanding fractions, etc) to
evaluate limits.

• Continuity
– Definition f being continuous at a in terms of the limit. Understand how this is the

same as the Direct Substution Property. Examples of different kinds of discontinuities.
– Continuity over an interval.
– Left and right continuity, definitions, examples.
– Adding and subtracting continuous functions, multiplying by a scalar, multiplying, and

dividing continuous functions.
– Polynomials, rational functions, root functions, and trigonometric functions are contin-

uous at any number x in their domains.
– If g is continuous at a, then limx→a f(g(x)) = f

(

limx→a g(x)
)

. The composition of two
continuous functions is continuous.

– The Intermediate Value Theorem, examples and applications.

• Infinite limits and limits at infinity
– Informal definitions of

∗ limx→a f(x) = ∞



∗ limx→a f(x) = −∞

∗ limx→∞ f(x) = L
∗ limx→−∞ f(x) = L
∗ limx→∞ f(x) = ∞

∗ limx→−∞ f(x) = ∞

∗ limx→∞ f(x) = −∞

∗ limx→−∞ f(x) = −∞

and corresponding one-sided limits. Notice there are many of these, so rather than mem-
orizing definitions, find a good system to be able construct the definition for yourself.
Understanding why the definition says what it says is key.

– Intuitive understanding of infinite limits based on what the values of a function do and
what the graph looks like

– A few computational tricks, such as limx→∞

p(x)
q(x) and limx→∞

p(x)
q(x) when p and q are

polynomials.
– Vertical and horizontal asymptotes, definitions and how to find them
– Formal definitions of infinite limits with M , N , δ, ǫ. Again, there are are many combi-

nations, especially if you include one-sided limits, so find a good system to be able to
reconstruct these in your mind instead of memorizing. Proving what the limit is using
the formal definition.

• Rates of change
– The slope of a secant line and average rate of change. What it means, proper units, and

how to calculate it using the difference quotient. Equation of the secant line.
– The slope of the tangent line and instantaneous rate of change. The tangent line at

x = x1 is the limit of the secant lines between x1 and x2 as x2 → x1. Physical units.
Equation of the tangent line.

– Definition of the derivative:

∗ f ′(a) = lim
x→a

f(x)− f(a)

x− a

∗ f ′(x) = lim
h→0

f(x+ h)− f(x)

h
Using the above definitions to find the slope of f . The limit can often be evaluated by
the computational tools we have for working with limits: factoring, rationalizing roots,
direct substitution into continuous functions, and the limit laws.

– Various notations for the derivative: f ′, f ′(x), df
dx
, dy
dx
, lim∆x→0

∆f
∆x

.
– The derivative as a function. The connection between the graph of f and the graph of

f ′. Understand why f > 0 if f is increasing, f ′ < 0 if f is decreasing, and f ′ = 0 if the
tangent line is horizontal.

– Differentiability of f . If f is differentiable at x then f must be continuous at x. Proof.
– The reasons why f ′(x) may not exist. Some of the most typical reasons are: f is

discontinuous, f has a vertical tangent line, the graph of f has a sharp corner (cusp).
Understand why these make the limit of the difference quotient not exist. Note that
these are not the only reasons that f ′(x) may not exist.

– Higher derivatives. Notation f ′′(x) =
d2f

dx2
, f (n)(x) =

dnf

dxn
, etc.

– f ′′ as the rate of change of f ′. Roughly speaking, f ′′ is the acceleration of f . Understand
why

∗ f ′′ > 0 if f ′ is increasing, which happens if the graph of f is curving up,
∗ f ′′ < 0 if f ′ is decreasing, which happens if the graph of f is curving down.

– Basic differentiation formulas:



∗ Constant function:
d

dx
c = 0. Intuition: f is constant, its value does not change,

so its rate of change is 0. Proof using the definition of the derivative.

∗ Power function:
d

dx
xn = nxn−1. Holds for any n ∈ R. Proof for n ∈ Z

+ using the

definition of the derivative.

∗ Constant multiple:
d

dx
cf(x) = c

d

dx
f(x) if f is differentiable at x. Interpretation

in terms of vertically stretching/compressing the graph of f . Proof using the
definition of the derivative.

∗ Sum of functions:
d

dx
[f(x) + g(x)] =

df

dx
+ dgdx if f and g are differentiable at x.

Proof using the definition of the derivative.

∗ Difference of functions:
d

dx
[f(x)− g(x)] =

df

dx
− dgdx if f and g are differentiable

at x. Proof using the definition of the derivative.

∗ The product rule:
d

dx
[f(x)g(x)] = f ′(x)g(x) + f(x)g′(x) if f and g are differen-

tiable at x. Proof using the definition of the derivative.

∗ The quotient rule:
d

dx

f(x)

g(x)
=

f ′(x)g(x)− f(x)g′(x)

g2(x)
if f and g are differentiable

at x. Proof using the product rule and the chain rule.

∗ The chain rule:
d

dx
f ◦ g(x) = f ′

(

g(x)
)

g′(x) if f is differentiable at g(x) and g

is differentiable at x. Somewhat defective proof by using the definition of the

derivative and multiplying by
g(x)− g(a)

g(x)− g(a)
or by

g(x+ h)− g(x)

g(x+ h)− g(x)
. Understand

why this proof is not quite correct.
∗ The derivatives of trigonometric functions:

d

dx
sin(x) = cos(x)

d

dx
cos(x) = − sin(x)

d

dx
tan(x) = sec2(x)

d

dx
sec(x) = sec(x) tan(x)

d

dx
csc(x) = − csc(x) cot(x)

d

dx
cot(x) = − csc2(x)

Proof of
d

dx
sin(x) = cos(x) and

d

dx
cos(x) = − sin(x) using approrpiate trig iden-

tities and the unit circle. Proofs of the other four by using the quotient rule.
– Implicit differentiation. Understand how you can find the slope of a curve given by an

equation in x and y by differentiating with respect to x while treating y = y(x) as an
implicit function of x in a neighborhood of a point on the curve. Know how to find the
equation of the tangent line and higher derivatives. Understand why a curve may not
have a slope at a point (e.g. vertical tangent line, self-intersection).

– Related rates. Understand how the rates of change of several quantities that are related
by an equation are related to each other. Know how to use the chain rule to solve word
problems about related rates.

• Applications of differentiation
– Definitions of local and absolute extrema and critical points. Fermat’s Theorem and

its proof. The Extreme Value Theorem. The closed interval method for finding the
absolute extrema of a continuous function over a closed interval [a, b].

– Rolle’s Theorem. Proof using the Extreme Value Theorem and Fermat’s Theorem.
– The Mean Value Theorem. Proof using Rolle’s Theorem. Understand why the function

needs to be continuous on [a, b] and differentiable on (a, b).



– Theorem that a function whose derivative on an interval is 0 must be a constant function.
Proof using the MVT. Corollary that says if f ′(x) = g′(x) on some interval then f(x) =
g(x) + c on that interval and its proof.

– The connection between f ′ and f . If f ′(x) > 0 on some interval then f is increasing on
that interval; and if f ′(x) < 0 on some interval then f is decreasing on that interval.
Proofs of these last two. The First Derivative Test to determine if a critical point is a
local min or max or neither.

– The connection between f ′′ and f . Definitions of concave up, concave down, inflection
point. If f ′′(x) > 0 on some interval then f is concave up on that interval; and if
f ′.(x) < 0 on some interval then f is concave down on that interval. The Second
Derivative Test to determine if a critical point is a local min or max.

– Antiderivatives. Definition of antiderivative. The role of the constant c in the most
general form of the antiderivative. Know how to use the rules of differentiation back-
wards to find the antiderivative of a function. Rectilinear motion: using antiderivatives
to recover velocity from acceleration and position from velocity.

• The area under the graph
– Approximating the value of a function from its derivative. The distance problem: ap-

proximating distance traveled by summing the product of velocity by time over short
time intervals.

– Approximating the area under the graph of f by rectangles. The Riemann sum, partition
of an interval, sample points. Special cases of the Riemann sum: left-hand sums, right-
hand sums, the midpoint rule, lower sums, upper sums. Understand how to calculate a
Riemann-sum approximation using a finite number of rectangles.

– Area under the graph defined as the limit of the Riemann sum. Calculating such a limit
directly from the definition, using properties of sums and limits. Definition of the definite
integral and integrable function. Integral notation, dummy variables. Understand why
areas under the x-axis count as negative.

– Theorem: A function f that is continuous or has only a finite number of jump discon-
tinuities on a closed interval [a, b] is integrable on [a, b].

– Understand how the definite integral can be found in some special cases using area
formulas for familiar shapes and symmetry instead of calculating limits.

– Properties of the definite integral:

∗

∫ b

a

c dx = c(b− a)

∗

∫ b

a

f(x)± g(x) dx =

∫ b

a

f(x) dx±

∫ b

a

g(x) dx

∗

∫ b

a

cf(x) dx = c

∫ b

a

f(x) dx

∗

∫ b

a

f(x) dx+

∫ c

b

f(x) dx =

∫ c

a

f(x) dx

∗ If 0 ≤ f(x) for all x ∈ [a, b] then 0 ≤

∫ b

a

f(x) dx

∗ If f(x) ≥ g(x) for all x ∈ [a, b] then

∫ b

a

f(x) dx ≥

∫ b

a

g(x) dx

∗ If m ≤ f(x) ≤ M for all x ∈ [a, b] then m(b− a) ≤

∫ b

a

f(x) dx ≤ M(b− a)

– The definition of the indefinite integral of f as the most general antiderivative of f . Make
sure you understand the difference between the definite and the indefinite integrals: the



former is the area under the graph (that is a number), the latter is the antiderivative
(that is a function).

– The Fundamental Theorem of Calculus establishes the connection between integration
and differentiation: If f is a continuous function on the interval [a, b] then

1.
d

dx

∫ x

a

f(t) dt = f(x) for any x ∈ [a, b].

2.

∫ b

a

f(x) dx = F (b)− F (a), where F is an antiderivative (or indefinite integral) of

f , that is F ′(x) = f(x).
– Important example of using the FTC: we defined the funtion F (x) =

∫ x

1
1
t
dt and noted

that this function is the natural log function ln(x), but we did not prove it. Hence
d
dx

ln(x) = 1/x.
– The average value of a function f over an interval. The Mean Value Theorem for

Integrals and its proof.

• Inverse functions
– Definition of the inverse of a function f(x). How to find the inverse by using y = f−1(x)

if and only if x = f(y) and solving for y or by solving f(g(x)) = x for g(x).
– The domain and range of f−1 and its graph as a mirror image of the graph of f .
– One-to-one functions, definition, examples. The horizontal line test. A function f can

only have an inverse if f is one-to-one.
– Theorem: if f is a one-to-one function from domain A to range B then it has an inverse

f−1 : B → A. Informal argument by reversing arrows in a diagram. We noted that a
function that is increasing or decreasing is one-to-one.

– Theorem: If f is a continuous function that has an inverse f−1 then f−1 is also con-
tinuous. We did not prove this but observed that it makes sense by thinking about the
graphs of f and f−1, which are mirror images.

– As an example of inverse functions, we noted that the ln(x) function is increasing and
therefore one-to-one and therefore has an inverse function. You know from prior courses
that the inverse of ln(x) is ex.

– If f is a differentiable function that has an inverse f−1, which is also differentiable, then

d

dx
f−1(x) =

1

f ′
(

f−1(x)
)

by using the chain rule.

• Derivatives and antiderivatives of exponential and logarithmic functions
– We found d

dx
ex = ex by using the fact that ex is the inverse of ln(x). So the antiderivative

of ex is ex + c. To differentiate or antidifferentiate ax, express it as ex ln(a) and use the
chain rule.

– To differentiate log functions, use the FTC and the fact that ln(x) =
∫ x

1
1
t
dt. Other log

functions can be differentiated by noting that loga(x) is the inverse of ax or by using

the logarithmic identity loga(x) =
ln(x)
ln(a) . We did not learn about the antiderivatives of

log functions.


