NOTES FOR SECTION 3.5

This section illustrates how we can apply what we know about the absolute and local extrema
of functions in practical contexts by working through a number of examples. Such problems are
called optimization problems and are some of the most typical applications of calculus. As usual,
the biggest challenge in these problems tends to be translating words into formulas. The same
general advice you were given in Section 2.7 still works. Other than that, it is a matter of practice.
You will want to read through the examples and understand them. I will work through an example
or two with you in class and I am glad to take requests on which example(s). You can pick one of
the examples in the section or one of the exercises if you prefer. If you don’t choose, I will.

Here are some notes for the examples in this section.

e Example 1 is a standard and straightforward example of using the Closed Interval Method we
learned in Section 3.1. We are looking for the absolute maximum of a continuous function
on a closed interval. So we find the critical points within the interval, and evaluate the
function at those and at the endpoints. The largest value we find is the absolute maximum.
Pay attention to what the problem asks you to find and make sure that is the question you
answer. In this case, it does not want the largest area, but the dimensions of the field with
the largest area.

e Fxample 2 shows you what you can do if you need to find the absolute extrema of a function
over an open interval. The Closed Interval Method does not work here. We still approach the
problem by finding the critical points within the interval. It turns out there is only one. We
can show that it is an absolute minimum by arguing that the function is always decreasing
before this critical point because its derivative is negative, and it is always increasing after
the critical point because its derivative is positive. The book refers to this argument as
The First Derivative Test for Absolute Extreme Values. Therefore its value at the critical
point is smaller than anywhere else. Another valid argument would be that it is easy enough
to see that the function is continuous on the open interval and that its values go towards
oo as the input variable r — oo and also as 7 — 0. Therefore it must have an absolute
minimum somewhere within the interval (0, 00), and that absolute minimum must also be a
local minimum and hence a critical point. So it must be the one critical point we found.

e FExample 3 is similar to Example 2 in that we are looking for the absolute minimum of a
function over an open interval. The point of the example is to illustrate that the calculations
can be simplified with a little thinking. While the problem could be solved by differentiating
the distance function, the square of the distance, which must have its absolute minimum at
the same place where the distance, is a simpler function, is easier to differentiate, and its
critical points are easier to find.

e Example 4 is similar to Example 1 in that it is asking for the absolute minimum of a
continuous function over a closed interval, so the Closed Interval Method can be used. Only
the function is more complicated than in Example 1.

e Example 5 is another use of the Closed Interval Method, but it also illustrates that sometimes
an absolute extremum can be found without using calculus at all by setting up the problem
in a different way.

e Example 6 illustrates an application in business. It is a straightforward maximization prob-
lem and the solution uses the same ideas as Examples 1, 3, and 4. This problem could also
be solved using the Closed Interval Method if the profit function were set up as a function
of y = the amount of the rebate. In this case, it would be clear that the only realistic values
of y are in the closed interval [0,350]. For fun, you could try solving it that way to see how
that works out.



