
Notes for Section 3.7

Suppose I tell you that I thought of a function f and its derivative is f ′(x) = 4x3. Can you
guess what function I thought of? You would probably say “Easy, it was f(x) = x4.” You would
almost be right. I could have thought of f(x) = x4 + 5 or f(x) = x4 − π or any function of the
form f(x) = x4 + c where c is a constant number (your textbook uses a capital C, I like a lower
case c). While we cannot tell exactly which of those functions I thought of, we can tell it must
have been one of these. We know this because we learned in Section 3.2 (Corollary 7) that two
functions that have the same derivative can only differ by a constant. Since we know d

dxx
4 = 4x3,

any other function whose derivative is 4x3 must look like f(x) = x4 + c for some constant c. Since
we got these functions by thinking about reversing the derivative f ′(x) = 4x3, we say that they
are antiderivatives of 4x3. So you can say x4 is an antiderivative of 4x3 and x4 + 5 is another
antiderivative of 4x3. Since f(x) = x4 + c is the most general form, which includes all of the
antiderivatives of 4x3, we call it the antiderivative of 4x3. While it is typically referred to as the
antiderivative, f(x) = x4+c is really a set of infinitely many functions. It is often called a family of
functions to suggest that they are all related. The process of finding the antiderivative of a function
is called antidifferentiation.

While it is unclear at this point why finding the antiderivative of a function may be useful,
we will soon see that it allows us to deal with another challenge in calculus that has a lot of
practical applications. For now, notice that what you know about derivatives allows you to find
the antiderivatives of many functions. For example, if I tell you that f ′(x) = cos(x), you can
easily tell that f(x) = sin(x) + c. We need to think a little harder if we want to figure out the
antiderivative of sin(x). We know that d

dx cos(x) = − sin(x). So a little intelligent guessing will lead

us to d
dx [− cos(x)] = −[− sin(x)]] = sin(x). Therefore the antiderivative of sin(x) is − cos(x) + c.

Similar thinking allows us to figure out the antiderivative of x2:
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Notice that while finding the antiderivative involves a bit of intelligent guesswork, checking that
our guess is correct is straightforward and involves no guesswork. I did not include the constant c
when differentiating because its derivative is 0 anyway, but there would be no harm if I did:
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Here is a table of antiderivatives, based the derivatives we know. The first column is the original
function f and the second column is the most general antiderivative F , so F ′ = f .

f F

xn if n 6= −1 xn+1

n+1 + c

sin(x) − cos(x) + c
cos(x) sin(x) + c
sec2(x) tan(x) + c
csc2(x) − cot(x) + c
sec(x) tan(x) sec(x) + c
csc(x) cot(x) − csc(x) + c



We can easily deal with sums, differences, and constant multiples of functions. Because of the
simple forms of the Sum Rule, Difference Rule, and Constant Multiple Rule, these rules work
backward just as easily as forward. For example, if we want to find the antiderivative of 7 3
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You might feel that since the antiderivative of 3
√
x is 3

4 x
4/3 + c, the antiderivative of 7x3 should be
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4/3 + 7c. That is actually correct. But since c is any real number anyway, so

is 7c. And if we just want to say 7 3
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4/3 plus any real number, we might as well write it in the

simpler form as 7 3
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Let us try a more complicated example. We will find the antiderivative of 7 3

√
x − 5 cos(x) + 4.

We can work on each term by itself. As we already noted, the antiderivative of 7 3
√
x is 7 3

4 x
4/3 + c.

The antiderivative of cos(x) is sin(x) + c, so the antiderivative of 5 cos(x) should be 5 sin(x) + c.
What about the antiderivative of 4? It is easy to see that 4x+ c will work. In fact, this does follow
from the table of antiderivatives above. We can write 4 as 4x0, and therefore its antiderivative is
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1 + c = 4x+ c. So the antiderivative of 7 3
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It is eeasy enough to check that this is correct:
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Notice that some of the functions in our table of antiderivatives are quite peculiar, such as
csc(x) cot(x). How likely are we to encounter exactly that function? On the other hand, some
obvious ones are missing. For example, we do not have the antiderivative of tan(x). You might

be tempted to think that since tan(x) = sin(x)
cos(x) , its antiderivative should be − cos(x)

sin(x) + c. But that

would definitely be wrong. Because of the Quotient Rule, the derivative of f/g is not f ′/g′, and
therefore the antiderivative of f ′/g′ is not f/g + c either. In fact,
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and not tan(x). Similarly, the antiderivative of x cos(x) is not x2

2 sin(x) + c because of the Product

Rule, and the antiderivative of sin(x2) is not − cos(x2) + c and not even − cos
(
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the Chain Rule.
In general, finding the antiderivatives of products, quotients, and composite functions is some-

what tricky and we do not yet know the tricks. Those tricks are mostly covered in Calculus 2. In
fact, antidifferentiation is quite a bit more complex than differentiation. While the properties of
derivatives we have learned (Sum Rule, Difference Rule, Constant Multiple Rule, Product Rule,
Quotient Rule, Chain Rule, derivatives of power functions and trigonometric functions) allow us to
find the derivative of just about any function made up of power funtion, root, and trigonometric



function components, finding the antiderivatives of such complex functions is quite an art with
many tricks, and the antiderivative often cannot even be expressed in terms of functions we are
familiar with.

So what about higher antiderivatives? The same way we can differentiate a function several
times to find its higher derivatives, we can also antidifferentiate several times to find its higher
antiderivatives. Here is a quick example. What can we say about f if f ′′(x) = 3 sin(x)? First, we
can say that f ′(x) = −3 cos(x) + c. Now we can say that f(x) = −3 sin(x) + cx+ d where c and d
are any real numbers. Note how we got the cx from the c and we needed a new constant d. We had
to assign a different letter to that new constant because there is no reason to believe it must have
the same value as the constant c that was already in the first antiderivative. You can differentiate
−3 sin(x) + cx+ d twice to verify that its second derivative is indeed 3 sin(x).

Examples 5 and 6 about objects moving along a straight line (or in general along a fixed path
that allows only forward or backward motion) give a hint about why antidifferentiation is a useful
thing. They reverse the ideas about position and velocity that led us to derivatives. They illustrate
how we can find the position of a moving object if we know its velocity and initial position, or find
the velocity and position of the object from its acceleration. The problem of recovering position
from velocity or acceleration has very definite practical applications. Prior to the availability of
GPS, commercial and military aircraft, cruise missiles, submarines, and torpedoes all relied on this
method to calculate their own positions. Such navigation systems are called inertial navigation
systems and work by carefully measuring the velocity of the moving vehicle and calculating its
position from this data. They are still in use at least as backup systems to GPS, or in places where
GPS is not available, such as under the sea or in space. And calculating position from acceleration
is how your smart phone or tablet knows how to orient its screen as you rotate it around.


