
MCS 119 Exam 2 Solutions

1. (5 pts each)

(a) Write |x| =
√
x2, and use the chain rule to show that
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2
√
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(b) If g(x) = sin |x|, find g′(x). Where is g not differentiable and why not? What does the

graph of g look like at the point(s) where g is not differentiable?

d

dx
sin(|x|) = cos(|x|) d

dx
|x|

= cos(|x|) x

|x|
The one place where g′ is suspect is at x = 0, since we end up with a 0 in the denomi-
nator. Everywhere else, g′(x) = cos(|x|) x

|x| has a legitimate value. In fact,

g(x) =

{

sin(x) if x ≥ 0

sin(−x) if x < 0

}

=

{

sin(x) if x ≥ 0

− sin(x) if x < 0.

So for x ≥ 0, the graph of g is the same as the graph of the sine function. For x < 0, it
is the graph of the sine function reflected across the x-axis:

So g has a cusp at x = 0, which is why it is not differentiable there.



2. (10 pts) A baseball diamond is a square with side 90 ft. A batter hits the ball and runs toward
first base with a speed of 24 ft/s. At what rate is his distance from third base increasing
when he is halfway to first base?

90

z

x

Consider the right triangle formed by third base, the batter’s box, and the batter. The
leg of this triangle between third base and batter’s box has a constant length of 90 ft. Let

x(t) = the distance between the batter and the batter’s box at time t

z(t) = the distance between the batter and third base at time t

Then
z2 = x2 + 902.

Differentiating this equation with respect to t gives

2z
dz

dt
= 2x

dx

dt
+ 0 =⇒ z

dz

dt
= x

dx

dt
.

At the present time, we know x = 45ft and dx
dt = 24ft/s. The latter is positive because the

batter’s distance from the batter’s base is increasing. We can find z by using the Pythagorean
Theorem:

z2 = 452 + 902 =⇒ z =
√

452 + 902 = 45
√
5.

Hence

45
√
5
dz

dt
= 45(24) =⇒ dz

dt
=

24√
5
.

So the batter’s distance from second base is increasing at 24/
√
5 ft/s ≈ 10.73 ft/s.

3. (10 pts) The curve x2 − 2y2 = 4 describes a hyperbola. There are two tangent lines to this
curve that pass through the point (2, 2). Use implicit differentiation to find the equations of
these two tangent lines.

Differentiating both sides of the equation with respect to x gives

d

dx
(x2 − 2y2) =

d

dx
4

2x− 4y
dy

dx
= 0

dy

dx
=

2x

4y
=

x

2y
.

Suppose the tangent line intersects the curve at the point (a, b), Then its slope there is

dy

dx
=

a

2b
.



But the tangent line we are looking for also passes through (2, 2), so its slope must be

∆y

∆x
=

b− 2

a− 2
.

Since a line can have only one slope, these two must be equal:

a

2b
=

b− 2

a− 2
.

If b 6= 0 and a 6= 2, this gives the quadratic equation

a(a− 2) = 2b(b− 2)

a2 − 2a = 2b2 − 4b

a2 − 2b2 − 2a+ 4b = 0

Remember that (a, b) is also on the hyperbola, and so it must satisfy a2 − 2b2 = 4. Hence
can replace the a2 − 2b2 on the left-hand side above by 4:

4− 2a+ 4b = 0 =⇒ 2a = 4 + 4b =⇒ a = 2 + 2b.

We can now substitute this into a2 − 2b2 = 4:

(2 + 2b)2 − 2b2 = 4

4 + 8b+ 4b2 − 2b2 = 4

2b2 + 8b = 0

b2 + 4b = 0

b(b+ 4) = 0

Hence b = 0 or b = −4. The corresponding values of a are a = 2 or a = −6. So one tangent
line passes through (2, 2) and (−6,−4), and so its equation is

y =
2− (−4)

2− (−6)
(x− 2) + 2 =⇒ y =

3

4
x+ 2.

The other tangent line passes through (2, 2) and (2, 0), and so it is a vertical line with
equation x = 2.

Actually, there is a mistake in the solution above. Remember that at some point along the
way we multiplied both sides of an equation by 2b and by a− 2, while we assumed neither of
these was 0. In fact, they both turned out to be 0 for the second tangent line. Interestingly,
the tangent line and its equation are still correct. We can fix this mistake by differentiating
with respect to y instead of x:

Differentiating both sides of the equation with respect to y gives

d

dy
(x2 − 2y2) =

d

dy
4

2x
dx

dy
− 4y = 0

dx

dy
=

4y

2x
=

2y

x
.

At (2, 0),

dx

dy
=

0

2
= 0.



This tells us that the hyperbola has a vertical tangent line at (2, 0), whose equation is x = 2.
Sure enough, this line happens to pass through (2, 2). We have indeed found a second tangent
line through (2, 2) without having to anything problematic, such as dividing by 0.

4. (10 pts) Let f be a function of real numbers and let c ∈ R be a local minimum of f . Prove
that c must be a critical point. Note that this result is part of Fermat’s Theorem, and so
you cannot use Fermat’s Theorem to prove it, as that would be circular reasoning.

Hint: If f ′(c) exists, consider the left and right limits of the difference quotient to argue
that the two-sided limit must be 0.

Suppose f has a local minimum at x = c. Then f(x) ≥ f(c) for every x in some small
enough neighborhood of c. Let us consider the right limit

lim
x→c+

f(x)− f(c)

x− c
.

Once x is close enough to c (and x > c), we have

f(x) ≥ f(c) =⇒ f(x)− f(c) ≥ 0 =⇒ f(x)− f(c)

x− c
≥ 0

for every x > c close to c. Hence

lim
x→c+

f(x)− f(c)

x− c
≥ 0

if the right limit exists at all.
Similarly, let us look at the left limit

lim
x→c−

f(x)− f(c)

x− c
.

Once x is close enough to c (and x < c), we have

f(x) ≥ f(c) =⇒ f(x)− f(c) ≥ 0 =⇒ f(x)− f(c)

x− c
≤ 0

for every x < c close to c. Hence

lim
x→c−

f(x)− f(c)

x− c
≤ 0

assuming the left limit exists.
Now, if f is differentiable at x = c, then

f ′(c) = lim
x→c

f(x)− f(c)

x− c

exists. But this is only possible if both the left and right limits exist and are equal. So

0 ≤ lim
x→c+

f(x)− f(c)

x− c
= lim

x→c−

f(x)− f(c)

x− c
≤ 0.

This is only possible if all four quantities in this inequality are 0. So

0 = lim
x→c+

f(x)− f(c)

x− c
= lim

x→c−

f(x)− f(c)

x− c
= lim

x→c

f(x)− f(c)

x− c
= f ′(c).

5. (5 pts each) Extra credit problem. Let n be a positive integer and f(x) = n

√
x. We

remarked in class that f can be differentiated using the power rule as

d

dx
n

√
x =

d

dx
x1/n =

1

n
x1/n−1.



But we never proved that the power rule works for powers with fractional exponents. Here
is your chance.
(a) First, note that [f(x)]n = n

√
x
n
= x for every x in the domain of f (which is R if n is

odd and R
≥0 if n is even). Differentiate both sides of the equation

[f(x)]n = x

(without substituting f(x) = n

√
x into it!) with respect to x to obtain an equation for

f ′(x).

First,
d

dx
x = 1.

Now,
d

dx
[f(x)]n = n[f(x)]n−1f ′(x)

by the chain rule. Hence

1 = n[f(x)]n−1f ′(x).

(b) Now, substitute f(x) = n

√
x into the equation you got in part (a), simplify, and solve

the equation for f ′(x). Did you get the expected result?

1 = n[f(x)]n−1f ′(x) = n n

√
x
n−1

f ′(x) = nx
n−1

n f ′(x).

Hence

f ′(x) =
1

n

1

x
n−1

n

=
1

n

1

x1−
1

n

=
1

n
x

1

n
−1.

This is exactly the result we would expect by using the power rule.


